摘要:iii-v半导体发光二极管(LED)是证明电致发冷却的有前途的候选人。但是,异常高的内部量子效率设计对于实现这一目标至关重要。可以防止基于GAAS的设备中统一内部量子效率的重要损失机制是周长侧壁的非辐射表面重组。为了解决此问题,提出了非常规的LED设计,其中从中央电流注入区到设备周边的距离延长了,同时保持恒定的前触点网格大小。这种方法有效地将周长移动到电流密度10 1-10 2 A/cm 2的电流密度以外的横向扩散。在P - I-N GAAS/INGAP双重杂结LED中,用不同尺寸和周长扩展制造的LED,通过将外周向接触距离从250μm扩展到250μm的前触点尺寸,可实现19%的外部量子效率。利用内部开发的光子动力学模型,估计内部量子效率的相对相对增加为5%。这些结果归因于由于较低的周边面积(p/a)比,周长重组的重组显着降低。但是,与通过增加LED的前触点网格大小来降低P/A比相反,目前的方法可以改进这些改进,而不会影响前触点网格下显微镜活性LED所需的最大电流密度。这些发现有助于在LED中进行电致发冷却的进步,并可能在其他专用的半导体设备中有用,在这些专用的半导体设备中,在外围重组是限制的。关键字:电致发冷却(ELC),微型LED(发光二极管),III-V半导体,电流扩散,周边重组,表面钝化
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
我们目睹了医学文献中使用人工智能 (AI) 及其分支机器学习 (ML) 方法的科学研究大幅增加。最近一项比较医疗专业人员与人工智能的分类表现的系统评价检索了自 2012 年 1 月以来发表的 20,000 多条研究报告记录。仅在 2020 年,医学电子数据库中就发现了 7,000 多条新记录 (1)。只需使用 1986 年推出的医学主题词 (MeSH)“人工智能”搜索 Medline 数据库,我们就会发现过去二十年记录数量持续增加 (图 1)。仅在 Medline 中,目前用该术语索引的记录总数就高达 120,000 条。阅读这些论文时,除了庞大的数量之外,还发现几个问题。
摘要本研究探讨了区块链技术对数字环境中数据完整性和安全性的变革性影响。通过对包括比特币,以太坊和超级织物在内的突出区块链网络的数据完整性指标进行全面评估,我们公布了不变性和可靠性的细微差异。我们的安全分析探讨了加密强度和对未经授权访问的阻力,展示了Hyperledger Fabric和Bitcoin的出色安全功能,以太坊表现出值得称赞的但中等的安全水平。讨论强调了区块链技术的多方面性质,强调选择与特定用例保持一致的平台的重要性。HyperLeDger面料和比特币作为需要高完整性和稳健安全性的应用程序的强大竞争者,而以太坊提供了可靠但中等的替代方案。随着区块链技术的不断发展,这项研究为从业者和研究人员提供了宝贵的见解,指导区块链平台的战略选择,以利用其在多样化的数字环境中的变革潜力。关键字:区块链技术,数据完整性,安全性,加密货币,HyperLedger。1。简介
Agriculture Sector Development Support Programme ASDSP Annual Development Plan ADP Arid and Semi-Arid Lands ASAL Central Bank of Kenya CBK Civil Society Organizations CSO County Climate Change Action Plan CCCAP Climate Change Unit CCU Climate Act Fund CAF Community Based Organizations CBO Community Forest Association CFA Conference of the Parties COP County Chief Officer CCO County Climate Action Plan CCAP County Climate Change Action Plan CCCAP County Climate Change Funds CCCFs County Executive Committee Member CECM County Information Services CIS County Integrated Development Plan CIDP Disaster Risk Management DRM Environment Impact Assessment EIA feed-in-tariff FIT Financial Year FY Financially Locally Led Climate Change Action FlloCCA Foot and Mouth Disease FMD Government of Kenya GOK Green Houses Gases GHG Integrated Water Resources Management IWRM Internally Displaced Persons IDPs Kenya Agricultural and Livestock Research Organization KALRO Kenya Climate Smart Agriculture KCSA Kenya Climate Smart Agriculture Strategy KCSAS Kenya Devolution Support Program KDSP Kenya Forest Service KFS Kenya Forestry Research Institute KEFRI Kenya Meteorological Department KMD Kenya National Bureau of Statistics KNBS Kenya Urban Support Program KUSP Kenya Wildlife Service KWS Lumpy Skin Disease LSD March April May rains MAM Measurement, Reporting, and Verification MRV
Table 1: Impacts of climatic hazards on the County.............................................................................. 6 Table 2: Suggested Community Adaptation Strategy to the Climate Hazards in Homa Bay County ..... 7 Table 3: Summary of differentiated climate exposure & vulnerability of key groups and livelihoods in the county ............................................................................................................................................. 9 Table 4: The Global & regional policy context .................................................................................... 13 Table 5: The national climate policy & legal framework ..................................................................... 14 Table 6: Priority climate change action in the county .................................................................................................................................................................................................................................................................................................................灾难风险管理....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2023-2027。...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
双同源框 4 (DUX4) 是一种转录因子,与人类胚胎四细胞阶段的合子基因组激活 (ZGA) 有关,在该阶段,它充当重复元件和分裂特异性基因的激活剂 [1,2]。人们认为 DUX4 在大多数躯体组织中受到表观遗传抑制,包括骨骼肌。面肩肱型肌营养不良症 (FSHD;MIM 158900) 是一种进行性神经肌肉疾病,其特征是面部、肩胛骨和肱骨肌肉不对称无力和萎缩 [3],D4Z4 大卫星重复序列的表观遗传抑制丧失。这导致 DUX4 基因座的转录活性,该基因座在每个 D4Z4 重复单元内编码 [4,5]。 DUX4 激活未受影响的骨骼肌中通常不表达的基因,包括在 ZGA 期间激活的基因和免疫系统基因 [6,7]。成肌细胞中 DUX4 过表达会诱导不同的毒性级联反应,包括氧化应激增加、无义介导的衰变抑制和肌肉生成抑制。这些变化最终