in science and engineeri Module 1: Laplace Tran Laplace Transforms: Def of Laplace Transform–Lin function, Dirac Delta functio Inverse Laplace Transfo to find the inverse Laplac Transforms Module 2: Fourier Series Introduction to Infinite ser condition, Fourier series of Practical Harmonic Analysis Module 3: Fourier Tran Fourier Transforms: De Transforms, Inverse Fourier Solution of first and second Module 4:数值m有限差,牛顿'lagrange的和逆滞后模块5:多项式方法的数值m解决方案,数值差异集成:辛普森(1/3
模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
摘要 - 物联网(IOT)是可再生能源研究的重要途径,尤其是在增强风车性能,降低风能成本以及减轻风能风险的方面。本文集中于利用物联网评估风能和太阳能以及估计模块寿命。物联网已改进了评估方法,监视精度和产品测试,绿色能源中的电力网络可靠性和库存管理影响。预测绿色能源输出至关重要,但由于风速爆发而具有挑战性。机器学习(ML)技术用于预测基于风能的电力输出,并对预测方法进行比较评估。物联网技术和算法可实现能源消耗预测,得出更准确的预测和较低的均方根误差(RMSE)。准确的气象预测至关重要,在绿色能源部门中,需要对真实风力发电机数据进行预测模型。该研究旨在开发用于精确预测的技术,重点是针对光伏系统的全面风预测算法。各种ML技术和绿色能源预测软件在这项工作中的准确性评估。
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
o上述问题的贝叶斯网络如下。网络结构表明,盗窃和地震是警报的母节,直接影响警报熄灭的可能性,但David和Sophia的调用取决于警报概率。o网络代表我们的假设没有直接感知入室盗窃,也不注意到次要地震,并且在呼叫之前也不会授予。o theconditionAldistributionsForeachNodeAdeAdeAsconditionalProbabilitableOrcpt。o CPT中的每一行必须汇总至1,因为表中的所有条目都代表了该变量的详尽集库。o在CPT中,带有K布尔父母的布尔变量包含2 K概率。因此,如果有两个父母,则CPT将包含4个概率值
自发明了计算机以来,我们想知道是否可以学习它们。如果我们能够理解如何对其进行编程以通过经验自动学习以自动改进,那么影响将是巨大的。想象一下计算机从医疗记录中学习哪些治疗方法最有效,对新疾病最有效,从经验中学习,以根据其居住者的特定用法模式来优化能源成本,或者个人软件助手的个人软件助手,以了解其用户不断发展的兴趣,以突出在线晨报中特别相关的故事。对如何使计算机学习的成功理解将打开计算机的许多新用途以及新级别的能力和定制水平。以及对机器学习的信息处理算法的详细理解也可能导致对人类学习能力(和残疾)的了解。我们尚不知道如何使计算机与人们学习一样。但是,已经发明了对某些类型的学习任务有效的算法,并且对学习的理论理解开始出现。已经开发出许多实用的计算机程序来展示使用的学习类型,并且重要的商业应用已开始涉及。对于语音识别等问题,基于机器学习的算法优于已尝试约会的所有其他方法。随着我们对计算机的理解继续成熟,它在被称为数据挖掘的现场,机器学习算法被召集使用,以从包含设备维护记录,贷款申请,财务交易,医疗记录等的大型商业数据库中发现有价值的知识。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
