Article title: Sentiment Analysis Based on Machine Learning Algorithms: A Comprehensive Study Authors: song jiang[1], Ela Kumar[2] Affiliations: university of houston[1], k l deemed to be university[2] Orcid ids: 0009-0007-8363-7304[1] Contact e-mail: sjiang24@central.uh.edu License information: This work has been在Creative Commons Attribution许可下发布的开放访问http://creativecommons.org/licenses/4.0/,只要适当地引用了原始工作,就可以在任何媒介中不受限制地使用,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000601.V2预印本在线发布:2024年2月19日
氢管道(HPL)是实现氢社会的氢运输系统之一。HPL氢泄漏是一个挑战,因为氢具有较宽的易燃范围和低最小点火能。因此,必须迅速检测到HPL的氢泄漏,应采取适当的动作。泄漏检测对于HPL的安全操作很重要。HPL的基本泄漏检测方法涉及监视传感器的压力和流速值。但是,在某些情况下,很难使用此方法区分非泄漏和泄漏条件。在这项研究中,我们根据压力和流速数据之间的关系,将使用机器学习(ML)的泄漏检测方法重点关注。将基于ML的泄漏检测方法应用于HPL面临两个挑战。首先,在过程设计阶段,ML的操作数据不足。其次,由于泄漏不经常发生,因此很难在氢泄漏过程中获得压力和流速行为。因此,这项研究采用了一种基于使用HPL物理模型模拟的数据,采用了一种无监督的ML方法。首先,构建了HPL(HPL模型)的物理模型,并根据数据
由于开发新化合物并确定其性能是昂贵且可能危险的,因此有必要开发一个模型来预测分子特性,而无需合成和实验测试。表示化合物的两种系统方法是通过分子结构的示意图和简化的分子输入线 - 进入系统(Smiles)。在这项研究中,这些表示分别用于训练两个神经网络模型,一个卷积神经网络(CNN)和一个经常性神经网络(RNN),以预测化合物的熔点。通过将化合物表示为结构的图像,CNN在拟合给定数据的拟合时不成功,似乎在给定数据的平均熔点附近保持恒定。然而,通过将化合物表示为系统生成的文本字符串,RNN成功地拟合了数据,总体趋势类似于实际趋势,平均绝对误差较低。但是,与结构图数据不同,用于RNN的微笑数据不包含方向信息。对于将来的研究,可能可以将两种表示形式结合起来,以达到更准确的预测模型。
数学系成立于1996年,旨在为数学及其在本科和研究生级别的工程领域提供强大的基础。数学系有15名教职员工,他们都是博士学位,在各种领域,例如代数,粗糙的理论,排队理论,随机过程,图形论,流体力学,功能分析,拓扑,图像处理,机器学习,深度学习等部门组织了SSN Trust和其他资助机构定期赞助的各种研讨会,FDP和会议。该系在钦奈安娜大学的领导下被公认。大约29 Ph.D.学者获得了学位,在我们教师的指导下,约有27名学者正在追求学位。大约29 Ph.D.学者获得了学位,在我们教师的指导下,约有27名学者正在追求学位。
必须强调整个系统中人与机器的能力之间的差异——人与机器都可以被视为具有巨大但非无限智能的复杂系统;机器的控制性能快速且可重复,而人的控制性能缓慢且多变;两者在压力下都容易发生故障;人的决策能力缓慢但灵活,机器的反应迅速但受到其可容纳程序范围的限制。发展的
人工智能 (AI) 是一项变革性技术,相当于人类文明早期的火。它是一种可用于解决复杂问题、做出预测、自动执行任务和提高生产力的工具。但就像火一样,它具有双重性质,既可能带来好结果,也可能带来坏结果。本课程不需要任何技术知识,专为希望领导在现实世界中部署 AI 系统、管理数据科学和设计团队以及建立和投资 AI 公司的人士而设计。本课程的目标是建立对 AI 可以做什么、机器学习如何工作、这些工具成功和失败的地方以及如何应对其道德影响的直觉。我们将探索广泛的商业应用,研究包括 ChatGPT、Midjourney、DeepBlue、Watson、AlphaZero、Twitter 和 TikTok 背后的推荐系统等在内的工具,并讨论在这些工具的帮助下管理人类团队的最佳实践。本课程是一门基于讲座的课程,包括基于案例的讨论、个人作业、期中考试和期末小组项目。最后,您应该成为识别有前景的用例、评估当前的局限性和识别潜在陷阱的专家,以便您能够应用人类和机器思维伙伴关系来发展新业务并颠覆任何领域的大师。
摘要。我们的生活现在围绕社会交流,并且由于阿拉伯文本非常复杂并且包含了许多方言,因此在阿拉伯社交媒体上很难识别出令人反感的语言。本文研究了机器学习模型的实施。使用了选择的分类器,包括决策树,支持向量机,随机森林和逻辑回归。在实验中使用了包含4505个推文的“ ARCYBC”数据集,以评估机器学习模型的性能。根据实验的结果,使用更多运行可以增强机器学习模型的性能,尤其是在精度和召回率方面。随着更多的运行,决策树(DT)和随机森林(RF)分类器显示出更好的回忆和精度,但是DT分类器显示出更好的精度。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化