关于2004年成立的研究所,在慈善事业,技术官僚的领导下,我是Jayaram Shetty和标志性的MNBS信托基金会,Mitk已与农村社区联系,作为希望获得技术教育的希望的象征。对于那些在经济上不那么优势的年轻人来说,它成为了光明的灯塔,但仍在照顾攻读专业工程学位并成为胜任企业家,技术专家或员工的大梦想。Mitk还为技术和人文学科毕业生提供研究生管理课程。成立于2008年,MITK提供了管理研究研究生学士学位(MBA - 工商管理硕士)。该部门属于Moodlakatte技术研究所的行政管辖权。该机构隶属于贝拉加维的Visveswaraya Technology University,并获得了新德里Aicte的批准。
in science and engineeri Module 1: Laplace Tran Laplace Transforms: Def of Laplace Transform–Lin function, Dirac Delta functio Inverse Laplace Transfo to find the inverse Laplac Transforms Module 2: Fourier Series Introduction to Infinite ser condition, Fourier series of Practical Harmonic Analysis Module 3: Fourier Tran Fourier Transforms: De Transforms, Inverse Fourier Solution of first and second Module 4:数值m有限差,牛顿'lagrange的和逆滞后模块5:多项式方法的数值m解决方案,数值差异集成:辛普森(1/3
要克服常规调节器的带宽限制,可以采用等离子设备。等离子调节剂已显示可运行高达500 GHz [8],因此是用于此类高宽宽应用的理想解决方案。最近通过微环谐振器调制器(MRR)[9]和高达363 GBIT/s的净数据速率(MACH-ZEHNDER调制器(MZM)[10])已被证明。这些等离子调节剂基于硅光子(SIPH)平台,因此可以无缝地集成到标准的SIPH过程中以进行整体整合。这有望通过共包装[11],启用小占地面积[12]和低驾驶电压[13]来进一步改进,这是400 Gbit/s tranceivers的理想候选者。然而,单个载体IM/DD演示仍缺少血浆以上的血浆以上。
现有的建筑库存翻新是建筑自动化的关键方面。例如,准确地确定连接器的位置对于在建筑物外部的预制面板进行安装至关重要。,传统的测量方法,例如使用总站的使用(请参阅[1])有几个限制,包括耗时,需要熟练的技术人员等。为了应对这些挑战并利用自动化的优势,将计算机视觉技术与视觉基准系统的集成被认为是可行的。在本文中,我们提出了与机器学习集成以解决上述问题的精制APRILTAG(请参见[2])检测管道。图1显示了其架构。我们将首先讨论Apriltag本地化准确性的研究差距。然后,我们将详细介绍管道的组合。第4节中的实验表明,我们的精制管道的精度非常好。这项研究是Ensnare项目[3]的一部分。
结构变异(SV)是重大的基因组改变,在包括癌症在内的遗传多样性,进化和各种疾病中起着至关重要的作用。检测SVS的传统方法通常在计算效率,准确性和可扩展性方面面临挑战,尤其是在处理大型基因组数据时。近年来,图形处理单元(GPU)和机器学习(ML)的出现已经开发了解决这些挑战的新途径。本文探讨了GPU加速度和ML技术的整合,以增强结构变体的检测和分析。我们提出了一个全面的框架,该框架利用深度学习模型(用于在GPU上并行处理)以高精度实现实时SV检测。我们的方法不仅减轻了计算负担,而且还提高了与常规方法相比,SV检测的敏感性和特异性。通过在各种基因组数据集上进行广泛的基准测试,我们在速度,准确性和可扩展性方面证明了我们的GPU加速ML框架的出色性能。这些发现强调了将GPU和ML技术相结合以革新基因组研究的潜力,并为在临床和研究环境中更有效,更精确的结构变体分析铺平道路。
•是通过S'训练的学习模型•火车测试拆分的想法独立验证集纠正预测错误•无论预测器有多糟糕,都无偏见;一个好的模型降低方差
我们以前的研究引入了一种改进的伏诺图方法,以提高州级在状态疫苗分布的效率。与广泛使用的柱生成技术相比,尽管运输费用更高,但该方法的运输成本降低了5.92%,需求覆盖率增加了28.15%。两种方法都有效地解决了分布问题,但由于决策变量的复杂性和数据的大规模性质,它们经历了大量的CPU时间。我们的论文着重于提高计算效率,同时保持解决方案的质量。文献提出了各种方法来提高基于Voronoi图的技术的效率。例如,Lipin(2014)引入了凸船体方法,而Chen&Merkel(2006)利用这种技术在随机测试中减少了选择开销。此外,Li&Liu(2020),Ohya等。(1984),秦等人。(2017)和Karavelas(2004)各自提出了降低计算冗余并提高效率的策略。但是,由于奖励功能和子区域重塑策略的差异,这些方法并不直接适用于我们修改的Voronoi图。为了解决这个问题,我们建议开发一种新算法,该算法将机器学习纳入增强的列生成(CG)方法,以改善运行时。
描述此研究生级课程的重点是机器学习与计算生物学之间的令人兴奋的交集。我们将涵盖现代机器学习技术,包括受监督和无监督的学习,特征选择,概率建模,图形模型,深度学习等。学生将学习这些方法的基本原则,基本的数学和实施细节。通过阅读和批评发表的研究论文,学生将学习机器学习方法在基因组学,单细胞分析,结构生物学和系统生物学中的各种生物学问题上的应用。学生还将通过深入的编程作业使用Pytorch学习使用Pytorch来实施深度学习模型。在最终项目中,学生将通过以生物学问题探索这些概念来应用他们所学的知识,以充满热情。
