本文探讨了量子机器学习 (QML) 在药物发现中的变革潜力。QML 利用量子计算和先进的机器学习来加速候选药物的识别、预测分子相互作用和优化化合物。关键应用包括高效虚拟筛选、分子模拟和预测建模。虽然前景光明,但 QML 面临着技术挑战,需要量子专家和制药研究人员之间的合作。总之,QML 提供了一种更快、更经济的药物开发途径,有可能重塑制药行业并推动医学科学的发展。
包。patran 3.0是由PDA工程创建的计算机软件包的最新版本,用于预处理和后处理有限元代码。[f兼容,Patran 3.0将用于定义组件表面的几何形状TOR纤维放置Windin_操作。这些表面的地貌必须使用Patran的模型替代能力产生。然后将计算机模型加载到硅图形工作站中,以便可以定义光纤放置路径。定义了光纤路径后,生成了FPM的实际机器指令代码。然后将机器指令加载到FPM中,并且可以制造所需的组件。FPM离线软件最初旨在读取Patran 2.5中性文件和I-DEAS(计算机自动化设计(CAD)软件包)通用文件。辛辛那提米拉克龙将评估并建议蒂科尔关于帕特兰3.0代码的兼容性。预计这不会是问题,而Patran 3.0代码将是可用的。
机器学习算法的使用经常涉及对学习参数的仔细调整和模型超参数。不幸的是,这种调整是一种“黑色艺术”,需要专家经验,经验法规或有时是蛮力搜索。因此,自动方法可以很好地呼吁,可以优化任何给定的学习算法的性能。在这项工作中,我们通过贝叶斯选择的框架来考虑这个问题,其中学习算法的概括性能是从高斯过程(GP)中建模为样本的。我们表明,对于GP性质的某些选择,例如内核的类型及其超级参数的处理,可以在获得可以实现专家级别的良好优化器方面发挥至关重要的作用。我们描述了新的算法,这些算法考虑了学习算法实验的可变成本(持续时间),并且可以利用多个内核的主体进行并行实验。我们表明,这些提出的算法可以改善以前的自动过程,并且可以针对许多算法(包括潜在的Dirichlet分配,结构化SVM和卷积神经网络)达到或超越人类专家级别的优化。
摘要 人工智能 (AI) 是一门科学,它涉及开发模仿人类智能的机器。机器学习 (ML) 是人工智能的一个子域,其中机器可以自动从数据中学习,而无需明确编程。农业不断受到压力,以用更少的资源生产更多。AI 和 ML 技术能够通过分析农业数据来优化资源利用率。它通过预测各种输入参数和预测作物的收获后寿命改变了当今农业的面貌。本章讨论了可用的不同 AI 和 ML 技术以及它们如何在农业生命周期的不同阶段使用。本章涵盖了农业中需要 AI 和 ML 的广泛领域。它包括土壤、灌溉和疾病管理。本章还介绍了人工智能在植物表型组学领域的重要性。本章讨论了地理信息系统 (GIS) 和遥感与人工智能相结合的可能用途。
● 抗炎分子,如 TGF-beta、BDNF ● 产生神经修复因子,如精氨酸转化产生的胶原蛋白 ● 氧化磷酸化状态 ● 健康的免疫反应:M1 小胶质细胞利用促炎细胞因子和吞噬作用杀死病原体,然后转变为 M2
乔治奥斯·扬纳卡基斯 马耳他大学数字游戏研究所,马耳他姆西达 摘要 数字游戏作为教育的新范式已具有重要意义。数字游戏人人都可以访问且价格合理,并为大规模教学和学习提供了机会。近年来,人们对数字游戏的兴趣日益浓厚,以支持大学预科(K-12)学校的计算思维和编程。人工智能(AI)和机器学习(ML)是一个快速发展的领域,在过去几年中吸引了越来越多的学习者。虽然数字游戏和AI/ML的融合对于教学和学习研究人员来说是一个重要且具有挑战性的领域,但该领域尚未进行过文献综述。这项工作的目的是回顾最近对支持AI和ML教育的游戏的研究。经过彻底的搜索,我们选择了相关的论文和游戏并将其纳入我们的定性内容分析。在此综述的基础上,我们概述了相关的研究论文和游戏,并展示了不同的游戏如何提供独特的机会来教授人工智能和机器学习中的许多不同概念和主题。 关键词:教育游戏、人工智能教育、机器学习教育、文献综述 1.简介 在过去的几年里,数字游戏在计算机科学(CS)和信息技术(IT)教育中越来越受欢迎(Harteveld 等人,2014 年;Kordaki 和 Gousiou,2016 年)。数字游戏一直是加强 CS 教育的几种流行方法。在 K-12 学校,有一些课程让学生参与玩游戏,其中包括必须解决的任务和问题才能进步(Vahldick 等人,2014 年),或鼓励学生使用可视化和基于块的编程环境开发游戏
随着当前网络平台用于在线电子商务的快速开发,除了透明的价格竞争外,买方的反馈也对消费者的购买决策也有合理的影响。今天,我们可以看到,近年来,消费者在相关网站上的反馈行为,包括著名的在线购物平台,例如亚马逊购物,Shopee Shopping和Toobao,近年来逐渐得到了增强。消费者反馈的实质性建议是否有助于其他肤浅的消费者阅读他们以改善购物习惯。在这项研究中,我们使用机器学习自动对反馈注释进行分类,并监视购物交易量的增长趋势,从而选择Shopee购物平台作为实验案例。根据评论提供的客户提供的建议已融入情感单词管理分析中,并且单词和单词分数得到了加权。最后,建造了商店销售引擎,该引擎模拟消费者的行为,使用审核管理过滤可变因素,并优化了预测消费者购物的指标。
大数据是一种变革性的力量,它重塑了我们收集、处理和从庞大而复杂的数据集中获取见解的方式 [1]。在我们日益数字化的世界中,信息以前所未有的速度生成,从社交媒体、传感器、电子商务交易等来源产生了海量数据 [2]。这种数据爆炸式增长催生了“大数据”一词,它指的是数据集非常庞大、多样且快速变化,以至于传统数据处理方法不足以有效处理它们。此外,大数据为新技术和工具的发展铺平了道路,例如数据湖、NoSQL 数据库以及 Hadoop 和 Spark 等分布式计算框架。这些创新使数据处理和分析的访问变得民主化,使更广泛的受众更容易获得它。大数据本身也带来了一系列挑战。隐私和安全问题至关重要,因为敏感信息的收集和存储引发了道德问题。此外,管理和处理大型数据集需要大量的计算资源,从而导致可扩展性和成本问题 [3]。大数据代表着一种变革力量,正在重塑企业、政府和研究人员的运作方式。它为洞察和创新提供了前所未有的机会,但它
人工智能和机器学习 (AIML) 辅修课程是一个包含三门课程的辅修课程。它对所有 VSB 学生开放,课程包括构建原型智能系统、自然语言处理、专家系统、监督和无监督学习、机器人技术以及构成广泛 AI 领域的其他领域。