本文介绍了通过 CFD 方法从各种飞机上分离外挂物所获得的结果。本文介绍了三种 CFD 应用。第一个应用介绍了计算结果,该结果通过通用机翼-吊架-外挂物配置(Eglin 测试案例)在 0.95 马赫下的可用实验数据进行了验证。本应用使用了两种不同的商用 CFD 代码:CFD-FASTRAN(隐式欧拉求解器)和非稳态面片法求解器 USAERO,并结合了积分边界层求解程序。使用 CFD-FASTRAN 可以捕捉到外挂物分离轨迹的主要趋势。此外,仅使用非稳态面片代码,就可以在 0.3 马赫下解决燃油箱与 F-16 飞机机翼和完整飞机配置的分离问题。详细讨论了两种代码解决存储分离问题的结果和优势。在第二个应用中,研究了相同的 Eglin 测试案例,其中使用非结构化的 Ansys FLUENT 获得计算结果。此测试案例获得的 CFD 结果与实验测试结果非常吻合。本文介绍的第三项研究是关于从战斗机上投放的诱饵的独立分离分析。本研究中使用的诱饵在几何形状上与用于电子战应用的对抗弹丸非常相似,其轨迹是使用 3DOF 飞行动力学代码预测的。使用 Ansys FLUENT 输入代码的气动系数及其验证。利用气动查找表,通过 3DOF/6DOF 非定常 CFD 和 3DOF 准定常飞行动力学分析获得了诱饵的轨迹。观察到,诱饵的重心位置、尾部尺寸和释放马赫数在诱饵沿其轨迹的振荡运动中起着至关重要的作用,因此对其安全分离也起着至关重要的作用。可以看出,静态不稳定的诱饵能够沿其轨迹翻滚。无论静态稳定性如何,其运动总是由高幅度振荡组成。
不到 80 年前,许多人担心超音速飞行是不可能的,因为有一种隐形“障碍”可能会摧毁飞机。1947 年 10 月 14 日,尽管许多人宣称查尔斯·“查克”·耶格尔上尉驾驶贝尔 X-1 从一架 B-29 上空坠落,然后启动火箭发动机,将速度推至 1.06 马赫,突破了许多人认为无法突破的障碍。
这家总部位于林肯郡的公司是欧洲高端机床制造商,专门为航空航天、核能、石油和天然气、医疗和汽车行业提供交钥匙解决方案,该公司还在 MACH 上展示了各种技术。其中包括 WFL 的巨型 M80 车削/铣削中心。WFL M80 专为重型工业应用而开发,是一款车削中心,中心间距可选 1、2、3、4.5 或 6 米,最大车削直径可达 1 米。这款强大的机器提供 56/80 千瓦的车削主轴功率和 58 千瓦的铣削主轴输出。机器容量和主轴功率使 M80 在材料去除率和生产率方面立即领先于其竞争对手,而旋转的 B 轴和 Y 轴为大型零件的一次性加工提供了无与伦比的灵活性。
引言围产期低氧缺血(HI)出现在每1000个活产1.5–3中。这通常是后来婴儿神经发育障碍的最常见原因,可以表现为成年后的干扰,例如学习,记忆和注意力减少(Piešová和Mach,2020年)。活产的低氧缺血性脑病的发生率在3/1,000至6/1,000之间,其中15%–20%的受影响婴儿在新生儿时期死亡,25%的幸存者可能会经历一些长期的序列(Guan等人,2017年)。缺氧通常假定具有病理作用,但也参与了维持正常的生理功能(Chen等,2020)。hi在大脑中可能会出现产前,自然和产后发生,但是如果神经发育后遗症出现在产前和出生时期,则将更加严重。几项研究证明,产前期间大脑中的氧缺乏症将
本文在安全与防御应用中使用亚轨道火箭件可以从中受益。论文描述了亚轨道火箭及其对现代科学,研究和技术发展的贡献。讨论了亚轨道火箭的历史观点及其在安全与防御角色中的应用。根据对公共可用来源的文献综述,列出和描述了在各个国家使用亚轨道火箭进行的,使用亚轨道火箭进行的选择重新搜索和开发活动,军事演习和防空系统的测试。该论文介绍了Oukasiewicz研究网络的功能 - 亚物质火箭领域的航空研究所。ILR-33 Amber 2K火箭的开发在Mach 4上达到飞行速度,并对达到100公里高度的飞行速度进行了评论,并评论了其在飞行模拟支持的安全和国防应用中的适用性。
压力/真空生成 自动泄漏检查 控制排气到环境 高度/空速输入 静态/动态(Qc)/总压力输入 高度/空速变化率输入 马赫数输入 TAS / IAS 切换,TAS 温度校正 高度偏移校正 30 个用户测试编程配置文件,每个配置文件 26 个步骤 超低速(5 至 200 节),用于提高准确性和稳定性 接近设定点时发出声音指示
可选活动 大脑模型:让学生制作大脑模型。制作方法多种多样。创意包括粘土、橡皮泥、蛋糕、纸浆、手机等。另一个可能的想法是让学生用回收材料制作“绿色大脑模型”。(这也可以避免高成本)。学生可以在课堂上或课外项目中制作这些模型。在课堂上展示模型,并让各小组展示他们的设计。
德莱顿整合了发动机进气口控制、自动油门、空气数据和导航功能,以提高 3 马赫飞机的整体性能。这种“协同数字控制系统”使飞机的航程增加了 7%,提高了操纵性能,还降低了进气口“未启动”的频率,这一直困扰着所有黑鸟飞行员。随着 YF-12C 机组的成功,普惠公司和空军后来于 1983 年将这一概念应用于整个 SR-71 机队。
已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。
5 轴螺旋钻削 另一项刚刚在 EMO 全球首发的全新性能策略是“5 轴螺旋钻削”循环。该循环将在 MACH 2016 上推出,可轻松高效地加工孔。该循环涉及具有前导角的螺旋铣削。然后使用向侧面倾斜的角度作为防撞过程的一部分。其优点是,只需一种刀具即可加工不同的钻头直径。无需预钻孔,该策略非常适合难以切割的材料。该工艺具有安全排屑的特点,并可减少刀具上的应力。实践测试表明,与传统钻孔相比,“5 轴螺旋钻削”可将加工时间缩短 20% 至 25%。