合作与荣誉代码每个学生负责自己的工作。学生可以一起讨论问题,但必须写下自己的解决方案。编写解决方案时,学生应写下与他们讨论任务的人的名字(如果有)。请注意,禁止复制家庭作业或编程作业。学生发现作弊或窃的学生将立即转介给学生院长和NJIT专业行为委员会,并受到纪律缓刑,记录下的永久标记,可能的解雇以及课程中的“ F”等级。所有提交的作业将检查是否相似,窃和认定的学生确定。在考试中,每个学生都必须签署《荣誉守则协议》,“我的荣誉,我保证我没有违反《 NJIT学生荣誉法》的规定。”
摘要。我们的生活现在围绕社会交流,并且由于阿拉伯文本非常复杂并且包含了许多方言,因此在阿拉伯社交媒体上很难识别出令人反感的语言。本文研究了机器学习模型的实施。使用了选择的分类器,包括决策树,支持向量机,随机森林和逻辑回归。在实验中使用了包含4505个推文的“ ARCYBC”数据集,以评估机器学习模型的性能。根据实验的结果,使用更多运行可以增强机器学习模型的性能,尤其是在精度和召回率方面。随着更多的运行,决策树(DT)和随机森林(RF)分类器显示出更好的回忆和精度,但是DT分类器显示出更好的精度。
摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
我们引入了神经状态机,力求弥合人工智能的神经和符号视图之间的差距,并整合它们互补的优势以完成视觉推理任务。给定一张图像,我们首先预测一个表示其底层语义并作为结构化世界模型的概率图。然后,我们对图进行顺序推理,迭代遍历其节点以回答给定的问题或得出新的推论。与大多数旨在与原始感官数据紧密交互的神经架构不同,我们的模型在抽象的潜在空间中运行,通过将视觉和语言模态转换为基于语义概念的表示,从而实现增强的透明度和模块化。我们在 VQA-CP 和 GQA 上评估了我们的模型,这两个最近的 VQA 数据集涉及组合性、多步推理和多样化的推理技能,在这两种情况下都取得了最先进的结果。我们进行了进一步的实验,说明了该模型在多个维度上的强大泛化能力,包括概念的新组合、答案分布的变化和看不见的语言结构,证明了我们方法的质量和有效性。
摘要:基于机器学习的糖尿病预测模型已在医疗保健中引起了人们的重大关注,作为糖尿病早期检测和管理的潜在工具。但是,这些模型的成功实施在很大程度上取决于医疗保健专业人员的参与。本摘要探讨了医疗保健专业人员在实施基于机器学习的糖尿病预测模型中的作用。医疗保健专业人员通过与数据科学家和机器学习专家合作,在这些模型的开发和实施中起着至关重要的作用。他们的临床专业知识和领域知识有助于确定相关的数据源和模型开发变量。他们还确保数据质量和完整性,在整个过程中解决道德方面的考虑。在实施阶段,医疗保健专业人员负责数据收集和预处理,包括从电子健康记录和可穿戴设备中收集患者数据。他们在清洁和组织模型输入数据时确保数据隐私和安全性。医疗保健专业人员评估和验证模型的性能和准确性,评估局限性和潜在偏见。集成到临床工作流程中是医疗保健专业人员的另一个关键责任。他们与IT部门合作,无缝整合
人工智能 (AI) 和机器学习 (ML) 在医疗保健领域的融合彻底改变了疾病诊断,为早期发现、提高准确性和个性化治疗提供了潜力。本文评估了各种 ML 算法在诊断多种疾病(包括心血管疾病、癌症、神经系统疾病和传染病)方面的有效性。通过分析关键的监督和非监督学习算法(如支持向量机、随机森林、神经网络和 K 均值聚类),本研究探索了它们在临床环境中的应用、优势和局限性。评估指标包括准确度、精确度、召回率和 AUC,用于评估这些算法的性能。本文还强调了人工智能诊断面临的重大挑战,例如数据质量、模型的可解释性、道德考虑以及与临床工作流程的集成。最后,它探讨了人工智能在疾病诊断中的未来前景,强调了深度学习、个性化医疗和人工智能与人类协作模型的进展。研究结果强调了人工智能在提高诊断效率方面的变革作用,同时也承认需要进一步研究、道德监督和监管框架以确保安全和公平实施。
文章标题:药物重新培训中的机器学习和人工智能 - 挑战和观点作者:Ezequiel Anokian [1],Judith Bernett [2],Adrian Freeman [3],Markus List [2],LucíaPrietoSantamaría[4],Auntorrarhman Tanoli [4] Bonnin [1]分支机构:发现与转化科学(DTS),Clarivate Analytics,巴塞罗那(西班牙)[1],《系统生物学数据科学》,慕尼黑技术大学,慕尼黑技术大学,德国(德国)[2] Biopharmaceuticals R&D,阿斯利康,剑桥(英国)[3],EscuelaTécnicasuperior de gegenierossismorlosinformáticos,Madrid大学(西班牙)大学(西班牙) (FIMM),Hilife,Hilife,赫尔辛基大学(芬兰),Bioicawtech,赫尔辛基(芬兰)[5] [5] Orcid ID:0000-0003-0694-1867 [1] [1],0000-0001-501-5812-8013 [2] 0000-0002-0941-4168 [2], 0000-0003-1545-3515 [4], 0000-0003-2435-9862 [5], 0000-0001-5159-2518 [1] Contact e-mail: Sarah.bonnin@clarivate.com Journal: Drugrxiv review statement:手稿目前正在审查中,应由酌处权对待。手稿提交日期:2024年3月12日关键字:机器学习,神经网络,人工智能,药物repurost
包。patran 3.0是由PDA工程创建的计算机软件包的最新版本,用于预处理和后处理有限元代码。[f兼容,Patran 3.0将用于定义组件表面的几何形状TOR纤维放置Windin_操作。这些表面的地貌必须使用Patran的模型替代能力产生。然后将计算机模型加载到硅图形工作站中,以便可以定义光纤放置路径。定义了光纤路径后,生成了FPM的实际机器指令代码。然后将机器指令加载到FPM中,并且可以制造所需的组件。FPM离线软件最初旨在读取Patran 2.5中性文件和I-DEAS(计算机自动化设计(CAD)软件包)通用文件。辛辛那提米拉克龙将评估并建议蒂科尔关于帕特兰3.0代码的兼容性。预计这不会是问题,而Patran 3.0代码将是可用的。
摘要3 1简介3 1.1 SWE的定义3 1.2 SWE估算的意义和动机4 1.3当前的操作SWE监视5 1.3.1地面测量6 1.3.2模型产品7 1.4 ML 9 1.5当前挑战9 2。SWE估计方法的历史发展10 2.1经验方法10 2.2基于物理的方法11 2.3数据驱动方法13 3.当前基于机器学习的SWE估计研究15 3.1早期努力(2000-2014)15 3.2最新技术(现状)(现状)(2014年至今)18 4。ml福利和瓶颈20 5。讨论和未来方向26 5.1 SWE的广义AI 26 5.2 SWE的自学习剂26 5.3将SWE AI纳入较大的地球AI模型27 6.结论28作者贡献28致谢28资金28参考28
