抽象的电排放加工是用于导电材料的非规定加工过程之一。它被广泛用于制造复杂的零件,这些零件很难由常规制造过程产生。它基于工件和电极之间的热电能。由于火花在电极和工件之间的缝隙中发生火花,因此通过熔化和汽化来去除金属。工件和电极必须具有导电以产生火花。EDM过程的性能在很大程度上取决于电极。电极被视为EDM过程中的工具。选择电极材料在EDM过程中起着至关重要的作用。不同的电极材料具有不同的特性。因此,EDM过程的性能随不同材料而变化。研究人员已使用不同的材料作为电极来研究材料的影响并改善EDM过程的性能。本文回顾了在EDM工艺中的材料和制造方法领域进行的研究工作。关键字:[EDM,电极,材料,制造过程]简介
这是由Scholarworks@UTEP免费带给您的。已被授权的ScholarWorks@UTEP管理员纳入公开访问论文和论文。有关更多信息,请联系lweber@utep.edu。
GF Machining Solutions:一切为了您 当您需要一切时,知道有一家公司可以为您提供完整的解决方案和服务,这是一件令人欣慰的事。从世界一流的电火花加工机 (EDM)、激光纹理和增材制造到一流的铣削和主轴、工具、自动化和软件系统(所有这些都由无与伦比的客户服务和支持提供支持),我们通过 AgieCharmilles、Microlution、Mikron Mill、Liechti、Step-Tec 和 System 3R 技术帮助您提高水平并增加竞争优势。
姓名:Gevorkyan,E. S.,作者。标题:新材料和部件的再制造和先进加工工艺:再制造和先进加工工艺 / E.S.Gevorkyan,M. Rucki,V. P. Nerubatskyi,W. Ż urowski,Z. Siemi ą tkowski,D. Morozow,A. Kharatyan。说明:第一版。| 佛罗里达州博卡拉顿:CRC Press,2022 年。| 包括参考书目和索引。| 摘要:“材料和部件的再制造和先进加工工艺介绍了加工新材料和修复部件的当前和新兴技术。它还研究了新材料的当代加工工艺、部件的保护和修复方法以及智能加工工艺。它主要从再制造和保护性表面工程的角度介绍了保护和修复部件的创新方法。本书面向机械、材料和制造工程领域的研究生、研究人员和工程师”——由出版商提供。标识符:LCCN 2021037850(印刷版)| LCCN 2021037851(电子书)| ISBN 9781032111568(精装本)| ISBN 9781032111575(平装本)| ISBN 9781003218654(电子本)主题:LCSH:机械加工。分类:LCC TJ1185 .G477 2022(印刷版)| LCC TJ1185(电子书)| DDC 621.9/02--dc23/eng/20211029 LC 记录可在 https://lccn.loc.gov/2021037850 上获得 LC 电子书记录可在 https://lccn.loc.gov/2021037851 上获得
本文通过提出数字影子 (DS) 的新愿景来解决决策辅助的数据管理和分析问题,该愿景将被视为未来数字孪生的核心组件。专家和人工智能产生的知识被转化为正式的业务规则并集成到 DS 中,以便在整个运行阶段表征物理系统的真实行为。该行为模型通过直接或衍生学习不断丰富,以改进数字孪生。所提出的 DS 依赖于数据分析(基于无监督学习)和知识推理引擎。它能够检测到事件,并且还能够解读其操作环境。提供了航空机械行业中此应用的一个例子,以强调该主张的可行性及其对车间绩效的潜在影响。
时间和成本,后处理的铣削操作通常是不切实际的,可能需要专门的工具。为了减轻对特殊工具的需求和其他处理,开发了混合添加剂制造系统以依次打印和铣削,以在一个机器平台中实现所需的表面饰面。商用机器平台与定向能源沉积系统结合了铣削(例如,Optomec,Mazak,DMG Mori)和粉末床融合系统(例如,Matsuura和Sodick)以达到小于0.8μm的表面粗糙度(SA)[1,2]。直接从构建室直接使用完成的机加工表面。Matsushita Electric Works,Ltd。(日本境外的Panasonic Electric Works)和Kanazawa University在2006年进行了第一项有关联合融合粉末床融合和铣削的研究,以生产A
摘要 随着人们对高性能陶瓷氮化铝 (AlN) 的兴趣迅速增加,许多研究人员研究了对其进行加工的可能性。由于 AlN 被归类为难切削材料,使用辅助电极的电火花加工 (EDM) 工艺正在成为一种有效的加工方法。煤油作为介电流体,在工件表面形成连续的导电碳层以诱导和维持放电方面起着重要作用。大多数以前的方法使用管状电极将介电流体稳定地输送通过其中心孔。然而,在微细电火花加工的情况下,非常小的电极直径使得难以在电极上制造通孔,并且非常窄的间隙会阻止介电流体的流动。为了克服微细电火花加工中介质液流动问题,本研究介绍了两种促进流动的方法:一是采用D形固体电极获得较宽的非对称流道,二是采用O形固体电极加石墨粉混合煤油(GPMK)在相对较宽的放电间隙下流动。流动模拟结果表明两种方法均能促进煤油流动,实验结果也显示出类似的结果。当采用D形截面时,材料去除率增加,但刀具磨损增加。与传统方法相比,对于GPMK,金属去除率提高了64%,相对磨损率降低了73%。通过电压调度,在不牺牲可加工性的前提下,解决了采用O形固体电极GPMK配置进行深孔钻削时出现的精度下降问题。
摘要:各种切削刀具材料用于在极端应力、温度和/或腐蚀条件下对部件进行接触模式机械加工,包括钻孔、铣削车削等操作。这些苛刻的条件会产生非常高的应变率(比成型高一个数量级),这限制了切削刀具的使用寿命,尤其是单点切削刀具。碳化钨是最常用的切削刀具材料,不幸的是,其主要成分 W 和 Co 在材料供应方面存在高风险,并且被列为欧盟关键原材料 (CRM),应解决其可持续使用问题。本文通过及时的回顾,强调了 CRM 在机械加工切削刀具中的发展和使用趋势。本综述的重点及其动机由以下四个主题驱动:(i) 讨论新兴的混合加工工艺,这些工艺可提高性能并延长刀具寿命(激光和低温结合);(ii) 开发和合成新的 CRM 替代品以最大限度地减少钨的使用; (iii) 提高磨损工具的回收利用率;(iv) 在工业 4.0 框架、循环经济和网络安全制造中加速使用建模和仿真来设计耐用工具。需要注意的是,本文的范围不是代表一份关于机械加工切削刀具的完整详尽文件,而是提高人们的认识,为在机械加工工具中使用关键材料的创新思维铺平道路,目的是制定智能、及时的控制策略和缓解措施,以抑制 CRM 的使用。
摘要。如今,由于其在机械和热性能方面的许多优势,聚氨酯(PU)泡沫在许多应用中成功替换了各种工程材料。在各种应用中,必须根据用户要求将PU FOAM形成各种三维模型,通过使用CAM软件和CNC铣削加工来制造产品。因此,根据材料和切割工具的性质和特征,在铣削加工过程中选择切割参数是必不可少的,并且显着影响了产生的PU泡沫产品的几何结构和表面粗糙度。根据对本文的审查,必须适当考虑几个加工参数,包括主轴旋转速度,切割深度,切割工具选择和进料速度。振动将随着主轴旋转速度的增加而增加,这带来了切割工具,但会带来更好的表面质量。可以通过选择适当的切割深度并产生低表面粗糙度值来实现连续的芯片形成。选择与材料特征相匹配的合适切割工具和几何形状可以减少加工过程中物质损害的风险,从而降低表面粗糙度值。最后,较低的切割率将使表面粗糙度最小化,但会增加尖端磨损的风险。
钛合金,例如Ti6Al4v,由于其有利的性质,在生物医学行业被广泛用于11种植入物应用。然而,这些合金在存在体液的情况下可以经历12种长期腐蚀,这是植入物13的关键问题,因为它会影响其时间pan。因此,本研究旨在检查体液中14 Ti6al4v的腐蚀性。高度期望的电气排放加工(EDM)技术15用于TI6AL4V样品制备的三种不同条件(油,去离子水,16和羟基磷灰石)混合在去离子水中)。通过微观结构分析,使用电化学17分析评估腐蚀。 结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。 在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。 20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。 22腐蚀。结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。22