聚合物和复合材料的实验室,材料与聚合物的创新与研究中心(CIRMAP),孟买大学,Place du Parc 23,Mons,7000,Belgium B Polymat和高级聚合物和材料系物理,化学,化学,化学,化学,技术,技术 Sebastián, 20018, Spain c Laboratory for Physics of Nanomaterials and Energy (LPNE), Research Institute for Materials Science and Engineering, University of Mons (UMONS), 20 Place du Parc, B-7000 Mons, Belgium d Laboratory for Chemistry of Novel Materials, Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 23, Mons, 7000, Belgium e Center for Education and Research on大分子(CERM),CESAM研究部,Liege大学,SART-TILMAN B6A,4000 LIEGE,BELGIUM F FRITCO 2 T平台,Liege大学,Sart-Tilman B6A,4000 Liege,Belgium
CRISPR-Cas9(成簇的规律间隔的短回文重复序列 - CRISPR 相关蛋白 9)平台最近被发现并随后发展成为一种精确的基因组编辑工具,它改变了生物医学。随着这些基于 CRISPR 的工具日趋成熟,基因编辑过程的多个阶段以及人体细胞和组织的生物工程也得到了发展。在这里,我们重点介绍了生物材料和基因组编辑技术发展中的最新交叉点。这些交叉点包括大分子的递送,其中生物材料平台已被利用来实现基因组工程工具向体内细胞和组织的非病毒递送。此外,为细胞培养设计类似天然的生物材料平台与基因组工程工具相结合,有助于对人类发育和疾病进行复杂的建模。这些领域生物材料平台的更深入整合可能对实现基因编辑在治疗人类疾病中的应用的新突破发挥重要作用。
摘要 使用由脂质体、胶束、聚合物纳米颗粒等制成的纳米载体进行靶向药物输送具有巨大前景。纳米载体的生物相互作用可以通过赋予其多功能性来以所需的方式进行控制。树枝状聚合物具有易于调节的表面,并且是高度支化的聚合物。由于树枝状聚合物外部存在功能基团,因此可以添加其他可以主动针对特定疾病并改善输送的部分。由于树枝状聚合物具有特殊的结构特征,它们已成为纳米载体的可行药物输送平台。树枝状聚合物是高度支化的单分散纳米大分子,其明确的结构提供了高度的表面功能性和内部腔体。树枝状聚合物(PAMAM、PPI 和聚酯)在基因传递、癌症治疗和抗生素中的应用已被研究。本研究重点关注基于树枝状聚合物的纳米载体的设计、功能化和生物医学应用,强调其在个性化医疗和下一代药物输送系统中的潜力。
物种(RNS)[9]。在糖尿病中,晚期糖基化终产物(AGES)的积累、山梨醇和己糖胺途径的激活以及蛋白激酶C介导的各种途径导致氧化应激增加[10-12]。这种氧化应激失衡可能导致多种大分子(如脂质、蛋白质和DNA)的细胞损伤[13,14]。脂质是自由基的主要靶点,导致脂质过氧化;当自由基攻击含有碳双键的脂肪酸,尤其是多不饱和脂肪酸(PUFA)时,就会发生这种情况[13,15]。损伤在于细胞膜的物理和化学性质的改变,导致功能改变、水肿和细胞死亡[14,16,17]。脂质过氧化研究最多的副产物是丙二醛(MDA)[18,19]。然而,通常情况下,酶和非酶抗氧化机制能够最大限度地减少氧化应激造成的损害[20,21]。
最近发现和随后的CRISPR – Cas9(群集定期间隔短的短质体重复杂种蛋白9)平台作为精确的基因组编辑工具已转移了生物医学。由于这些基于CRISPR的工具已经成熟,因此基因编辑过程的多个阶段和人类细胞和组织的生物工程已经发展。在这里,我们重点介绍了生物材料和基因组编辑技术开发的最新交集。这些相互作用包括大分子的递送,在其中利用生物材料平台可以使基因组工程工具的非病毒递送到体内细胞和组织。此外,与基因组工程工具结合使用时,工程类似于本机的生物材料形式可促进人类发育和疾病的复杂建模。在这些领域的生物材料平台的更深入范围可能在实现基因编辑以治疗人类疾病的基因编辑方面发挥重要作用。
3. 热塑性与热固性预浸料 3.1 材料化学和反应性 热固性与热塑性是两种聚合物材料,通过将聚合物基质与纤维结合,可用于加工复合结构部件。高性能热固性基质由不同环氧树脂与硬化剂和催化剂的复杂配方组成,需要在低温下储存以防止聚合放热反应开始。在部件加工过程中,未固化材料在接近 180°C 的温度下加热以形成网状网络,从而获得所需的机械性能。这种聚合化学反应需要由部件制造商控制,但不可逆。关于热塑性塑料,配方的优势在于远离 REACH 法规,并且材料供应商已聚合供应。供应的聚合物由排列成无定形和结晶相的大分子线性链组成(半结晶聚合物)。这涉及到
基因治疗作为一种新型治疗方法,被用于治疗癌症、遗传病、感染病等疾病[1-3]。其中,基于信使RNA(mRNA)的疗法作为2019冠状病毒病(COVID-19)的疫苗已获得美国食品药品监督管理局(FDA)的紧急批准。mRNA于20世纪60年代被发现,体外mRNA转录在20世纪80年代末开始快速发展[4,5]。此外,自20世纪90年代以来,人们已经开始研究mRNA的体内转染[6]。通常,裸露的mRNA带负电荷,属于大分子,由于细胞膜带负电荷,靶细胞不能有效摄取[7,8]。此外,即使 mRNA 被靶细胞吸收并进入内体,mRNA 也需要逃离内体/溶酶体并进入细胞质才能进行基因转移。因此,高效的载体对于成功递送 mRNA 至关重要 [ 9 – 18 ]。
胶原蛋白是哺乳动物中最丰富的蛋白质,广泛表达于组织器官和肿瘤细胞外基质中。肿瘤胶原主要聚集在肿瘤基质或肿瘤血管内皮下,由于肿瘤血管的结构破碎,肿瘤胶原暴露在外。通过血管的通透性和滞留性(EPR)效应,胶原结合大分子容易与肿瘤胶原结合并在肿瘤内聚集,使得肿瘤胶原成为潜在的肿瘤特异性靶点。近年来,大量研究证实,靶向肿瘤细胞外基质(TEM)内的胶原可增强免疫治疗药物在肿瘤处的蓄积和滞留,显著提高其抗肿瘤疗效,并避免严重的不良反应。本文对已知的胶原结合结构域(CBD)或蛋白(CBP)、其作用机制及其在肿瘤靶向免疫治疗中的应用进行综述,并展望未来的发展。
• ANAT 321 人脑回路(3 学分) • ANAT 322 神经内分泌学(3 学分) • ANAT 365 细胞运输(3 学分) • ANAT 381 实验胚胎学(3 学分) • ANAT 458 膜与细胞信号传导(3 学分)* • BIEN 510 医学科学中的纳米粒子(3 学分) • BIOC 312 大分子生物化学(3 学分) • BIOC 450 蛋白质结构与功能(3 学分) • BIOC 470 疾病中的脂质和脂蛋白(3 学分)** • BIOC 454 核酸(3 学分) • BIOC 458 膜与细胞信号传导(3 学分)* • BIOL 300 基因分子生物学(3 学分) • BIOL 303 发育生物学(3 个学分) • BIOL 306 行为的神经基础 (3 个学分) • BIOL 314 致癌基因的分子生物学 (3 个学分) • BIOL 370 人类遗传学应用 (3 个学分) • BIOT 505 生物技术选题 (3 个学分) • CHEM 302 有机化学入门 3 (3 个学分) • CHEM 334 先进材料 (3 个学分) • CHEM 462 绿色化学 (3 个学分)
不幸的是,如今,脑部疾病(包括神经和精神疾病)是全世界范围内导致残疾的主要原因。一些严重疾病的发病率和死亡率都很高。然而,过时的技术基础设施使得治疗这些疾病变得困难。血脑屏障 (BBB) 是中枢神经系统 (CNS) 的保护机制,调节其稳态过程。大脑受到一个极其复杂的系统的保护,免受伤害和疾病的侵袭,该系统精确调节离子、极少量微小分子以及更少数量的大分子从血液流向大脑。然而,血脑屏障也大大抑制了药物向大脑的输送,使得无法治疗各种神经系统疾病。目前正在研究几种策略来增强药物在血脑屏障上的运输。根据这项研究,纳米粒子是治疗脑部疾病最有希望的药物之一,虽然许多传统药物也能够穿过这一屏障,但