流感是一种高度传染性的呼吸道疾病,仍然对世界各地的公共卫生构成严重威胁。预测技术有助于监测季节性流感和其他类似流感的疾病,以及适当地管理资源以制定疫苗接种策略,并选择适当的公共卫生措施以减少疾病的影响。这项调查的目的是预测使用XGBoost模型在2020年和2021年的沙特阿拉伯每月发病率,并将其与Arima和Sarima模型进行比较。结果表明,与Arima和Sarima模型相比,XGBoost模型具有最低的MAE,MAE和RMSE,并且R-squared(R²)的最高值。本研究将XGBOOST模型与Arima和Sarima模型的准确性进行了比较,以提供每月季节性流感病例数量的预测。这些结果证实了以下概念:XGBoost模型的预测准确性高于Arima和Sarima模型,这主要是由于其捕获复杂的非线性关系的能力。因此,XGBoost模型可以预测沙特阿拉伯季节性流感病例的每月发生。
尊敬的先生/女士 2008 年规划法 – 第 88 和 89 条以及 2010 年基础设施规划(检查程序)规则 – 第 4、6、9 和 13 条 Mona Offshore Wind Limited 申请授予 Mona Offshore Wind Farm 开发许可的命令 任命检查机构、邀请参加初步会议、草拟检查时间表、决定程序和听证会通知 我的名字是卡罗琳·琼斯 (Caroline Jones),我已被国务卿任命为审计局 (ExA) 的主要成员,负责对上述申请进行审计。ExA 的其他成员包括 Andrew Harwood、Graham Hobbins、Jessica Powis 和 Jason Rowlands。可以在此处查看预约通知的副本。该申请包括在威尔士建造一座海上风力涡轮机发电站,该发电站的发电能力将超过 350 兆瓦,因此根据 2008 年规划法案,该项目是一项具有国家意义的基础设施项目。我们正处于申请的预审查阶段。这意味着我们已收到请求并准备对其进行审查。我们要感谢那些提交相关评论的人。这些意见帮助我们考虑如何审查该申请。
大脑的生物年龄与其实际年龄 ( CA ) 不同,可用作神经/认知疾病过程的生物标志物和死亡率的预测指标。大脑年龄 ( BA ) 通常使用机器学习 (ML) 从磁共振图像 (MRI) 中估算出来,而这种机器学习很少能表明大脑区域特征对 BA 的贡献。利用 3 418 名健康对照 (HC) 的总体训练样本,我们描述了一个岭回归模型,该模型量化了每个区域对 BA 的贡献。在对 651 名 HC 的独立样本进行模型测试后,我们计算每个区域脑容量的偏决定系数 ¯ R 2 p 以量化其对 BA 的贡献。还使用实际年龄和生物年龄之间的相关性 r、BA 估计值的平均绝对误差 ( MAE ) 和均方误差 ( MSE ) 来评估模型性能。在训练数据上,r = 0.92 ,MSE = 70.94 年,MAE = 6.57 年,且¯ R 2 = 0.81 ;在测试数据上,r = 0.90 ,MSE = 81.96 年,MAE = 7.00 年,且¯ R 2 = 0.79 。体积对 BA 贡献最大的区域是伏隔核(¯ R 2 p = 7.27 %)、颞下回(¯ R 2 p = 4.03 %)、丘脑(¯ R 2 p = 3.61 %)、脑干(¯ R 2 p = 3.29 %)、后外侧沟(¯ R 2 p = 3.22 %)、尾状核(¯ R 2 p = 3.05 %)、眶回(¯ R 2 p = 2.96 %)和中央前回(¯ R 2 p = 2.80 %)。尽管我们的岭回归表现不及最先进的 ML 方法,但它确定了每个大脑结构对整体 BA 的重要性和相对贡献。除了可解释性和准机械见解之外,我们的模型还可用于验证未来 BA 估计的 ML 方法。
微度是一种无意的,瞬态的意识丧失,与睡眠相关,持续到15秒。脑电图(EEG),记录已广泛用于诊断和研究各种神经系统疾病。这项研究分析了时间序列EEG信号,以使用两个深度学习模型来预测微渗:长期术语记忆(LSTM)和人工神经网络(ANN)。调查结果表明,ANN模型在微填料预测中实现了出色的指标,在关键性能指标中的表现优于LSTM。该模型表现出了出色的性能,如散点图,R2分数,平均绝对误差(MAE),均方误差(MSE)和根平方误差(RMSE)的结果所证明的。与LSTM模型相比,在两个模型之间,ANN模型在两个模型之间达到了最重要的R2,MAE,MSE和RMSE值(0.84、1.10、1.90和1.38)。这项研究的关键贡献在于其开发全面有效的方法,以准确预测来自EEG信号的微度事件。
摘要。流动性风险是巨大的财务威胁,其管理不善会导致重大财务损失。本研究研究了机器学习技术(例如KNN,SVM,决策树,RF和XGBOOST)在印度银行的流动性风险中的应用。2013 - 2022年的财务数据分析了31个商业银行。模型将财务比率用作预测因素,流动性风险由流动资产与总资产和贷款比率相关。尽管由于样本较小而导致的普遍性限制,但结果表现出诸如KNN和XGBoost等算法的潜力,以预测准确的流动性风险。该研究的发现表明,使用液体资产将液体资产用于总资产来替代流动性风险的模型给予了KNN的最佳结果,并分别给出了MAE和MSE评分0.129和0.027。当使用存款贷款以替代流动性风险时,DT是表现最好的算法,MAE和RMSE得分分别为0.191和0.231。还发现,与其他选定模型相比,MLP表现不佳。实际含义包括使用这些技术为印度银行开发流动性预警系统。
摘要:在海上研究以及搜索和救援操作中,建立或预测漂流物体的轨迹很重要。可以使用带有海洋动态模型的传统工具或通过人工智能模型来确定漂移对象的轨迹。从2003年12月19日至12月28日之间收集的漂流浮标数据中,研究小组采用了CNN(CORV1D)模型进行分析。分析结果表明,通过使用ADAM优化器,Huber损耗函数和256个过滤器,在隐藏层中,该模型性能的特征参数被确定为RMSE = 0.04004,MAE = 0.032304度,R²= 98%。使用SGD优化器和均方误差(MSE)损耗函数时,与先前情况相比,RMSE和MAE值最多降低了四倍,而R²值则在隐藏层中有64个过滤器达到99.9%。当隐藏层中的过滤器数增加到128时,CNN(CORV1D)模型的性能提高了20%,RMSE = 0.007863DEG,MAE = 0.006653DEG。使用CNN(Conv1D)模型使用SGD优化器预测漂移浮标的轨迹时,R²值和MSE损耗函数接近约100%,这表明该模型适用于预测漂流浮标轨迹的输入数据。将模型隐藏层中的过滤器数量从128增加到256并没有改变模型的预测性能,这表明该情况的最佳过滤器数为128。未来的工作应继续使用较大的输入数据集进行漂移数据分析。但是,这项研究中获得的RMSE结果仍然相对较大(0.87 km),这可能是由于输入数据有限。
预测扩张的心肌病中重大心律失常事件(MAE)代表了一个未满足的临床目标。计算模型和人工智能(AI)是新的技术工具,可以在我们预测MAE的能力方面具有重大提高。在这项概念验证研究中,我们提出了一个基于深度学习(DL)的模型,我们称其为扩张心肌病(DARP-D)中的深度心律失常(DARP-D),该模型使用多种心脏磁共振数据(CINE和HYPERVIDEOS和HYPERVIDEOS和HYPERIMIMIAS和LGE图像和临床上的MA)(包括一个促进的MA),促进了促进的Maiatiations和临时性的MARIADES和临时性的促进,该模型(DARP-D)构建了。随着时间的流逝,心脏骤停,由于心室原纤维造成的,持续30 s的心室心动过速,或在<30 s的<30 s(适当的可植入的心脏除颤器干预)中导致血流动力学塌陷。该模型在154例扩张心肌病患者的样本中有70%的培训和验证,并在其余30%中进行了测试。DARP-D在Harrell的C一致性指数中达到95%CI,在测试集中达到0.12–0.68。我们证明了我们的DL方法是可行的,并且代表了扩张心肌病的心律失常预测领域的新颖性,能够分析心脏运动,组织特征和基线协变量,以预测一个个体的患者患者的大型心律失常事件的风险曲线。但是,患者,MAE和训练时期数量少,使该模型成为有希望的原型,但尚未准备好临床使用。需要进一步的研究来改进,稳定和验证DARP-D的性能,以将其从AI实验转换为每日使用的工具。
是否有不同的神经网络,接受过各种视觉任务的培训,共享一些共同的表示?在本文中,我们证明了我们在具有不同体系结构,不同任务(生成和歧视本地)以及不同类型的监督(班级监督,私人文本,文本监督,自学,自我求职,自我求助)的一系列模型中称为“ Rosetta神经元”的存在。我们提出了一种用于挖掘跨多种流行视觉模型的Rosetta神经元词典的算法:类监督 - Resnet50,Dino-Resnet50,Dino-Vit,Mae,Mae,Clip-Resnet50,Big-Gan,Big- Gan,stylegan-gangan-2,stylegan-xl。我们的发现表明,某些视觉概念和结构在自然世界中固有地植根于自然界,并且可以通过不同的模型来学习,而不论特定的任务或体系结构,并且不使用语义标签。,由于我们的分析中包含的生成模型,我们可以直接可视化共享概念。Rosetta神经元促进了模型对模型翻译,实现了各种基于反转的操作,包括跨级比对,变化,放大等,而无需进行专业培训。