量子资源理论是一个强大的框架,可用于描述和量化相关量子现象,并确定优化其在不同任务中的使用过程。在这里,我们定义了魔法的资源度量,这是大多数容错量子计算机中备受追捧的特性。与以前的文献不同,我们的公式基于玻色子代码,这是连续变量量子计算中经过深入研究的工具。具体来说,我们使用 Gottesman-Kitaev-Preskill 代码来表示多量子位状态,并考虑 Wigner 负性的资源理论。我们的技术可用于为状态转换和门合成等不同应用找到资源下限。我们的魔法度量的解析表达式使我们能够将当前的分析扩展到小尺寸,轻松处理多达 12 个量子位的系统。
LED 电源 12/24 V DC 最大电流消耗 42,6 mA (12 V DC)/70,4 mA (24 V DC) 保护 防止电源极性变化 灯光 四种基本颜色的 LED 灯:红色、绿色、黄色和蓝色 检测距离 集成非接触式开关,自适应检测距离可达 50 mm
摘要:发明一种“完美模仿”思维的机器的雄心似乎源于发明“完美模仿”自然的机器的逻辑结果。从透视图到摄影,西方艺术科学利用镜头和镜子等机械手段复制我们对自然的视觉体验。它的主要关注点一直是将大自然的“魔力”捕捉到图片的“合成瞬间”中。事实上,视觉艺术的主要成就可以被描述为视觉增强。同样,逻辑科学充分利用计算机来模拟我们的思维体验,其主要目标似乎只不过是以某种人造魔法的形式重现思维的本质。否则,我们还能如何模拟人类思维?信息处理的认知体验在多大程度上可以被视为思维增强?
Principles 143 Problems 143 Solutions 144 Two Attractive Opposites 145 Bright-Field Lighting 145 Choose the Background 147 Position the Light 147 Position the Camera 147 Position the Subject and Focus the Camera 147 Shoot the Picture 147 Dark-Field Lighting 150 Set Up a Large Light Source 151 Set Up a Dark Background Smaller than the Light Source 152 Position the Camera 152 Position the Subject and Focus the Camera 153 Shoot the Picture 153 Te Best of Both Worlds 154 Some Finishing Touches 155防御玻璃器皿的表面155照亮背景158最小化地平线159停止耀斑162消除外部撤退163 nonglass受试者的并发症164玻璃164液体中的164液体164作为镜头164保持真实颜色166二次不透明受试者168识别主要受试者168识别主要受试者171
• 与“捕食者”性能相似 • 无机翼挂点 • 改进的航空电子设备(三重冗余) • 自动起飞和降落能力
光是一种特别有吸引力的按需药物输送工具,因为它具有非侵入性、易于使用以及精确的时间和空间控制。新型光驱动药物输送策略的开发在广度和深度上都取得了巨大进展。光控药物输送平台通常可分为三类:光化学、光热和光异构化介导疗法。各种先进材料,如金属纳米粒子、金属硫化物和氧化物、金属有机骨架、碳纳米材料、上转换纳米粒子、半导体纳米粒子、刺激响应胶束、聚合物和脂质体基纳米粒子均已应用于光刺激药物输送。鉴于人们对按需靶向药物输送的兴趣日益浓厚,本文回顾了光响应系统的发展,重点介绍了最新进展、关键限制和未来方向。
魔法状态蒸馏(或非稳定状态操纵)是实现可扩展、容错和通用量子计算的主要方法中的关键组成部分。与非稳定状态操纵相关的是非稳定状态的资源理论,该理论的目标之一是表征和量化量子状态的非稳定性。在本信中,我们引入了 thauma 度量系列来量化量子状态中的非稳定性数量,并利用该度量系列来解决非稳定状态资源理论中的几个悬而未决的问题。作为第一个应用,我们建立了假设检验 thauma 作为一次性可蒸馏非稳定性的有效可计算基准,这反过来又导致了非稳定性蒸馏速率以及魔法状态蒸馏开销的各种界限。然后我们证明 max-thauma 可以用作对魔法状态蒸馏效率进行基准测试的有效可计算工具,并且它可以胜过以前基于 mana 的方法。最后,我们使用 min-thauma 来约束文献中称为“魔法正则化相对熵”的量。通过这个约束,我们发现两类具有最大 mana(先前确定的非稳定度度量)的状态不能以等于 1 的速率在渐近状态下相互转换。这一结果解决了非稳定状态资源理论中的一个基本问题,并揭示了非稳定状态资源理论与其他资源理论(如纠缠和相干性)之间的差异。
受其对大多数容错量子计算方案的必要性的启发,我们为魔法状态制定了资源理论。我们首先表明,魔法的鲁棒性是一种行为良好的魔法单调,它操作性地量化了使用辅助魔法状态的 Gottesman-Knill 类型方案的经典模拟开销。我们的框架随后在使用魔法状态合成非克利福德门的任务中得到了直接应用。当魔法状态与克利福德门、泡利测量和稳定器辅助元素交错时(最一般的合成场景),可合成单元类很难表征。我们的技术可以对实现给定目标单元所需的魔法状态数量设置非平凡的下限。在这些结果的指导下,我们找到了这种合成的新示例和最佳示例。
用于量子化学的量子算法绘制分子中电子的动力学与耦合自旋系统的动力学。为了达到有趣分子的化学准确性,必须应用大量的量子门,这意味着需要进行量子误差校正和易于断层的量子计算。可以通过门编译的一组易于故障的通用操作来构建任意耐断层操作。量子化学算法是通过使用猪排公式分解耦合自旋系统的动力学来编译的,并使用Cli效法操作和单值旋转合成分解的动力学,并通过最终近似于单质量旋转的单个质量旋转序列,并通过单位固定器单位单位单位Qubit Bit Bit Bit Bit Bit Bit Bite。某些容忍故障的门取决于被称为魔术状态的特定单量状状态的制备。结果,门汇编和魔术状态蒸馏对于解决量子计算机上的量子化学问题至关重要。我们回顾了最近的进展,这已经提高了通过数量级来提高栅极汇编和魔术状态蒸馏的效率。