波士顿金属公司正在通过 MOE 开辟一条新的初级炼钢工艺路线。与使用碳还原铁矿石的传统路线(即将铁与矿石中的氧分离)不同,MOE 工艺使用直流电还原铁矿石。矿石在 1,600°C 左右的氧化物电解质中熔化,穿过熔池的电子将铁与氧分离,产生的副产品是氧气,而不是正常的 CO 和 CO 2 混合物。请参阅下面的公式。结果是清洁、高纯度的液态金属,可以直接送往钢包冶金,而无需重新加热。该工艺可用于所有铁矿石等级。MOE 工艺消除了焦炭生产、铁矿石加工、高炉还原和碱性氧气炉精炼的需要。它还可以取代天然气供给的 DRI 生产。该公司还在探索该技术用于铌和钒等其他高价值金属,并正在巴西投资一家试验工厂。新技术预计将在 2026 年实现钢铁商业化。自 2019 年以来,RHI Magnesita 一直是 Boston Metal 的主要合作伙伴。
摘要:锌及其合金因具有增强的生物相容性而被视为制备可生物降解医疗器械(支架和骨固定螺钉)的有前途的材料。这些材料必须实现机械性能和腐蚀性能的理想组合,而合金化或热机械过程可能会影响这些性能。本文介绍了不同机械合金化 (MA) 参数对 Zn-1Mg 粉末成分的影响。同时,本研究描述了 MA 制备对 Zn-6Mg 和 Zn-16Mg 合金的影响。采用放电等离子烧结 (SPS) 法压实选定的粉末。随后,研究了它们的微观结构并测试了它们的力学性能。整个过程导致晶粒显着细化(Zn-1Mg 为 629 ± 274 nm)并形成新的金属间相(Mg 2 Zn 11 、MgZn 2 )。烧结样品的压缩性能主要与合金元素的浓度有关,浓度增加导致强度提高但延展性变差。根据所得结果,Zn-1Mg合金的性能最好。
结果:Mg + B族维生素 +绿茶 + Rhodiola在注意力转换任务期间分别增加了额叶中线与安慰剂和rhodiola的合并,特别是预期任务绩效参数的变化。合并的处理还显着增加了对侧theta激活,这与观察左侧的情感威胁图像有关(与安慰剂和rhodiola隔离)和右顶叶(相对于安慰剂)区域。此外,这种治疗方法表明,相对于观察情感威胁的图像而言,同侧左侧theta激活的同侧显着提高。联合治疗减弱了在比较治疗中明显的注意力偏置任务中α功率的降低,但这并没有达到明显的影响。没有发现治疗对行为表现或ERP的显着影响。
1. 内布拉斯加大学林肯分校机械与材料工程系,内布拉斯加州林肯市,美国 2. 普渡大学机械工程学院,印第安纳州西拉斐特,美国 通讯作者 – MP Sealy,电子邮件 sealy@unl.edu 摘要 增材制造 (AM) 镁合金由于拉伸应力和粗大微观结构而迅速腐蚀。提出了将增材制造与层间超声波喷丸循环结合(混合)作为一种解决方案,通过强化机制和压缩残余应力来提高增材制造的镁 WE43 合金的耐腐蚀性。应用层间喷丸加工硬化离散层并形成区域晶粒细化和亚表面压缩残余应力屏障的全球完整性。通常会加速腐蚀的拉伸残余应力降低了 90%。结果表明,通过层间喷丸可以实现对腐蚀的时间分辨控制,并且与打印的 WE43 相比,打印单元内的局部腐蚀减少了 57%。关键词:增材制造、混合制造、镁 1. 引言 随着镁增材制造技术发展到更高的水平 [1],医疗器械和石油压裂行业寻求对负载-压力进行时间分辨的降解。
镁(以下称“Mg”)合金的比重为1.8以下,仅为轻量化材料铝(以下称“Al”)的三分之二。最近,在薄型笔记本电脑机身中,Mg合金的轻量化价值得到了认可。住友电气工业株式会社镁合金开发部将独有的急速凝固技术*1应用于通用的AZ91D Mg合金*2,制造出具有轻量化、高强度、高耐腐蚀性特点的AZ91板材,并致力于将其实际应用于薄型笔记本电脑机身。最近,受新型冠状病毒感染的肺炎疫情影响,社会环境发生了重大变化,个人和社会规范发生重大转变,包括个人交流和企业运营在内的所有社会活动都正在向数字化和线上化转变。为了普及推动数字化的IoT、AI技术以及加速其应用的第五代移动通信系统(以下简称“5G”),必须完善基础设施。人们期待包括个人和产业在内的社会能够利用这些技术创造新价值、实现社会创新。(1)实现社会创新的一大障碍是基础设施建设时电子设备的发热量。(2)作为重要电子设备和零部件的CPU所使用的半导体集成度不断提高,发热量集中化。预计随着IoT和5G的应用,功耗会增加,局部发热量也会增大。(2)近年来,薄型笔记本电脑、智能手机等电子设备机身的体积和尺寸不断缩小。受这些因素影响,预计发热量将超过电子设备的允许工作范围。电子设备的冷却技术将变得比以往任何时候都更加重要。 (2)减少
摘要:本研究的目的是在钛 (Ti) 植入物表面形成功能层,以增强其生物活性。使用经济高效的浸涂法,在碱处理的 Ti 表面上沉积了含有羟基磷灰石 (HAp) 纳米颗粒 (NPs) 和镁 (Mg) 颗粒的聚氨酯 (PU) 层。从形态、化学成分、粘附强度、界面结合和热性能等方面评估涂层。此外,使用 MC3T3-E1 成骨细胞样细胞研究了细胞对不同涂层 Ti 基材的反应,包括通过碱性磷酸酶 (ALP) 测定评估细胞粘附、细胞增殖和成骨活性。结果表明,HAp NPs 的加入增强了涂层和碱处理的 Ti 表面之间的界面结合。此外,Mg 和 HAp 颗粒的存在增强了表面电荷特性以及细胞附着、增殖和分化。我们的结果表明,在钛植入物上沉积含有 Mg 和 HAp 颗粒的生物活性复合层可能会诱导骨形成。
今天,在各个行业中,需要作为一般质量控制测试。已经制定了几种工业标准以准确执行测试。必须在夏比冲击测试中确定动态断裂能及其与半经验方程式与断裂韧性的关系。在本研究中,具有标准ASTM E23样本量的AZ31镁合金的夏比冲击试验是通过凹槽深度,温度和凹槽角对断裂能的影响来衡量的。Taguchi和L18阵列已用于设计实验并根据所研究因素的数量获得最佳状态。通过使用ANOVA分析每个输入变量对目标参数的影响,并提取输入参数的值,以通过信号到噪声方法来最大化断裂能量的量。结果表明,凹槽深度对断裂能的影响最大,并且随着凹槽深度的增加而减小。还以60°的凹槽角在-10°C下在非横轴样品中获得最大化断裂能的最佳组合。
MT13 • 分辨率 :1 μm、5 μm、10 μm • 输出信号 :A/B 相(报警期间输出变为高阻抗) • 输出格式 :电压差分线路驱动器输出(符合 EIA-422) MT14 • 分辨率 :1 μm、5 μm、10 μm • 输出信号 :A/B 相、报警(报警期间输出不变为高阻抗) • 输出格式 :电压差分线路驱动器输出(符合 EIA-422) MT20 • 分辨率 :1 μm、5 μm、10 μm • 仅适用于 MF10 MT30 • 分辨率 :1 μm、5 μm、10 μm • USB2.0