1。Mehregan Dor,哲学博士学位(自2016年8月以来一直在建议),预计毕业日期2024年5月2。Dongliang Zheng,哲学博士(自2018年8月以来建议),预计毕业日期2023年12月3日。Yue Guan,哲学博士学位(自2019年8月以来一直在建议),预计毕业日期2024年8月4日。Matthew King-Smith(机器人计划),哲学博士学位(自2017年8月起),预计毕业日期2023年8月5日。诺兰·瓦格纳(Nolan Wagener)(机器人计划),哲学博士,(自2019年8月以来共同审议),主要顾问:拜伦·布特(Byron Boots),预期毕业日期,2023年12月6日。Travis Driver(机器人计划),哲学博士学位(自2019年8月以来建议),预计毕业日期2024年5月7.雅各布·诺布(Jacob Knaub)(机器人计划),哲学博士学位(自2019年8月起),预计毕业日期2024年5月8.ji yin(机器人计划),哲学博士学位(自2020年8月以来),预计毕业日期2024年5月9.Mahdi Ghanei(机器人计划),哲学博士学位(自2020年8月以来提出建议),预计毕业日期2024年5月10日。Joshua Pilipovksy,哲学博士(自2020年1月以来一直被告知),预计毕业日期为2024年5月11日。洛伦佐·蒂科齐(Robotics Program),哲学博士(自2021年8月以来一直),预计毕业日期2026年5月12日。Zhiyuan Zhang,哲学博士(自2022年8月以来一直被告知),预计毕业日期是2025年5月13日。 iason Velentzas(机器人计划),哲学博士学位(自2022年8月起),预计毕业日期2028年5月14日。Zhiyuan Zhang,哲学博士(自2022年8月以来一直被告知),预计毕业日期是2025年5月13日。iason Velentzas(机器人计划),哲学博士学位(自2022年8月起),预计毕业日期2028年5月14日。evangelos Psomiadis,哲学博士(自2022年8月以来建议),预计毕业日期2028年5月15日。哲学博士乔治·拉帕科利亚斯(自2022年8月以来一直被告知),预计毕业日期2028年5月16日。Nichlolas Brittain,科学硕士(ECE)(自2022年8月以来提出的建议),预计毕业日期是2024年5月17日。Longxu Pan,机器人科学硕士(自2022年8月以来建议),预计毕业日期; 2023年5月
团队项目清单1。开发用于锂金属电池的低温电解质。ahmad amiri,Andreas A. Polycarpou 2。找到俄克拉荷马州的关键矿物和稀土元素资源Aaron Ball3。长老会印度女孩学校:查找Tu的土著起源教授。Sara Beam和Laura Stevens 4。修改了使用几何形态计量法和生态型物体的以色列1.6 Ma ubeidiya的动物群体:非洲的早期人物分散,Miriam Belmaker教授5.零矩阵教授的分析。尼克·考克斯·斯蒂布(Nick Cox-Steib)和理查德·雷德纳(Richard Redner)6。明信片上的注释Jennifer Croft教授7。固定天然气生产教授Nagu Daraboina的经济分析8。STEM教育研究孵化器Helen Douglass教授9.,孩子的寓言在提供健康和保健的基本概念时,孩子的寓言对学龄前儿童的理解有何影响?当学生护士被利用在创新临床经验的战略参数中提供基本的医疗保健和教育时,对服务不足的人口健康的影响,Cassy Abbott Eng教授11.评估塔尔萨教师研究所(Tift)教授Lara Foley(与Daniel Thater)12。Fire Fit:使用人工智能创建消防员的物理准备应用程序戴维斯·黑尔(Davis Hale)教授13。光伏(PV)设计和安装抛物线槽实验设施PROFS。Parameswar Hari,Sorooor Karimi 14。SCADA编译器*教授。利用攻击图的网络防御状态估计* Peter J. Hawrylak教授15。攻击和合规性生成和分析* Peter J. Hawrylak教授16。使用基于图的工具自动化创造性问题的理论(TRIZ)方法* Peter J. Hawrylak教授17。管道的甲烷监测系统*教授。彼得·J·霍里拉克(Peter J.Peter J. Hawrylak,Mauricio Papa和Eduardo Pereyra19。为美国的谱系图数据集创建专利* Peter J. Hawrylak教授20。传播科学和疾病教授的临床研究。Laura Wilson和Christy Hedges 21。使用扫描隧道显微镜教授Erin Iski 22。使用秀丽隐杆线虫作为模型系统检查细胞分裂的分子机制。Jyoti Iyer教授23。制冷的实验设置开发用于热学科实验室课程(ME-4123)Sorooor Karimi教授24。开发高中教育教授的能源转换和过渡实验室。Mohan Kelkar和Eduardo Pereyra和25。自适应转移场景分类用于不同天气条件Mahdi Khodayar教授26。临时亲爱的疗法:与药品有关的难以捉摸的元构造的新策略,* Angus Lamar教授27。阿尔茨海默氏症药物类似物的合成和生物活性靶向脑癌*
由于其在疾病发作和进展过程中控制新生血管形成的作用,该药物被认为是治疗银屑病的首选药物 (Fareed 和 Al-Qrimli 2024;Mahdi 等人 2024)。抗原 Kiel 67 (Ki-67) 是细胞增殖的重要标志,在银屑病皮肤细胞中广泛表达 (Khairutdinov 等人 2017)。银屑病的治疗方式包括局部治疗、全身治疗和光疗。不幸的是,这些药物的副作用常常使患者无法耐受长期治疗,从而限制了其临床应用 (Xie 等人 2021)。局部使用类固醇的不良反应包括皮肤萎缩和感染,而全身吸收可引起库欣综合征、骨坏死、儿童生长迟缓和肾上腺抑制 (Del Rosso 2020;Al-Jabr 等人 2024)。他扎罗汀被标记为妊娠 X 类警告 (Sami 和 Feld 2021)。口腔黏膜炎、肝毒性和骨髓抑制是甲氨蝶呤的显著副作用 (Zhu 等人 2022;Attarbashee 等人 2023)。高血压和肾毒性限制了环孢菌素的长期使用 (Krueger 等人 2022)。黏膜皮肤干燥是大多数患者使用阿维 A 的常见副作用 (Kakarala 等人 2021)。阿普斯特可能引起恶心和代谢影响(Langley 和 Beecker 2018)。随着生物药物的问世,银屑病治疗的有效性和耐受性在过去二十年中显著提高。阻断 TNF-α、IL-17、IL-12/23 和 IL-23 的药物被批准用于治疗银屑病。抗银屑病药物引起的持续炎症改变可能会进一步影响银屑病的合并症因素(Salman 等人 2024a)。生物制品安全性调查有助于定制抗银屑病疗法。具体而言,IL-17 拮抗剂与溃疡性结肠炎有关。对于伴有心脏病、多发性硬化症或恶性肿瘤的银屑病患者,需要谨慎使用 TNF-α 阻滞剂。因此,发现创新的抗银屑病药物仍然很困难 (Jiang 等人 2023)。褪黑激素是一种吲哚胺,是一种主要由松果体合成的复杂激素,具有抗氧化、抗炎、抗血管生成和抗凋亡特性 (Amaral 和 Cipolla-Neto 2018;Ma 等人 2020;Muñoz-Jurado 等人 2022)。在一系列针对自身免疫和自身炎症疾病的实验研究中,广泛研究了褪黑激素的治疗 (Zhao 等人 2019;Ahmed 等人 2022;Ahmad 等人 2023;Obaid 2024)。芦丁是一种多酚天然糖基化黄酮醇型类黄酮,来源于多种植物和水果 (De Jesus 等人 2024)。芦丁的作用可能是通过改变促性腺激素、生殖类固醇激素、前列腺素二十烷酸和细胞因子,以及氧化、炎症、过度增殖、凋亡和血管生成过程(Jahan 等人 2016;Sirotkin 和 Kolesarova 2022;Sirotkin 2024)。然而,治疗牛皮癣最有效的方法是联合使用几种不同的药物(Gustafson 等人 2013;Elmets 等人 2021;Sreya 等人 2023)。据我们所知,褪黑激素和芦丁
Zohair I.F.Rahemo *和Sarbaz I. Mohamad Kurdistan自然历史博物馆,萨拉哈丁大学,萨拉哈丁大学,埃尔比尔,伊拉克库尔德斯坦 * *相应的作者:zohair_rahemo@yahoo@yahoo.com&sarbaziraq&sarbaziraq@yahoo.com iraq的摘要actract of lizart的摘要。某些伊拉克蜥蜴在伊奥利(Eolian)沙丘中或至少在沙质土壤上被采用,或多或少地限于此类地区。在丰富的物种中是acanthodactylus,scincus,phrynocephaluss的物种。sc属属的成员和较小程度的phrynocephalus物种,都适合于软砂和砂中挖洞。此外,劳达基(Laudakia)的物种,例如nupta,似乎仅限于石灰石露头和岩石悬崖面,即使在库尔德斯坦的山上都可以撤退。Trapelus的种类,例如T. agilis,t。persicus,T.Ruderatus出现在平原,山谷和冲积球迷上,在沙质,壤土,粘土和砾石土壤上。这些蜥蜴通常在小岩石的附近发现,例如当地居民竖立的蜥蜴,以标记摩苏尔市干燥地区的谷物田的边界(叙利亚边界附近)。他们撤退到这些堆中以庇护。phrynocephalus物种对特定土壤类型的特定偏爱有些偏爱,有些物种偏爱开放的粘土和砾石平原,而其他物种通常在桑迪平原和草原上发现。抑制岩石的物种,能够协商岩石露头和山地栖息地的粗糙垂直表面。其中包括劳达基亚的物种和几种拉克塔物种。这些蜥蜴通过询问并利用许多缝隙从捕食者和极端温度撤退来利用这种环境的许多角度和阴影来调节温度调节。壁虎,cyrtopodion通常在岩石斜坡和悬崖面上,缝隙和洞穴中,以及关于人类居住在尤其是C. scrabum中。此外,在石膏沉积物和石灰石的洞穴中发现了asaccus elisae。种类的尿素局部分布将其局部分布限制在排水良好的冲积土壤中,在这些土壤中,他们能够挖掘出洞穴,例如U. Lorcatus更喜欢粉砂泥土。关于Varanus spp。居住在最连续分布的基板上。从蜥蜴栖息地的生物多样性上面。可以得出结论,蜥蜴的演变可能与这种对底物类型的特定亲和力相关。Keywords: Lizards, Lacerta, Substrate, Distribution, Iraq Introduction Iraq is a rich geographic area for many animals, and more especially for lizards, due to its wide range of deserts and diversified habitat, as desert plateau comprises the largest part of Iraq (57% of the total land area)as estimated by a directory of wetlands in the Middle East (Iraq), 1994 Reptiles of Iraq have been a很久以前的调查主题是Werner(1895),然后是Khalaf(1959年)的《 Star》,他写了一本关于他的研究和其他观察的书,而没有给出记录的物种的任何地方。在他对蜥蜴和蛇(1960年)的其他研究中,他能够识别22种蜥蜴的蜥蜴。Mahdi和George(1969)列出了包括蜥蜴在内的脊椎动物的全面清单,他们列出了48种蜥蜴,而无需在伊拉克提供任何地方或收集的标本中任何独特的特征。后来在Dixon和Anderson(1973)上描述了一个新的属和
作者:Debashis Sahoo 1-3 † *、Gajanan D. Katkar 4 *、Soni Khandelwal 1 、Mahdi Behroozikhah 2 、Amanraj Claire 4 、Vanessa Castillo 4 、Courtney Tindle 4 、MacKenzie Fuller 4 、Sahar Taheri 2 、Thomas F. Rogers 5-6 、Nathan Beutler 5 、Sydney I.拉米雷斯 10, 11, 斯蒂芬 A. 罗林斯 11, 维克多·普勒托里斯 14, 大卫·M.·史密斯 11, 丹尼斯·R.伯顿 5, 7-8, 劳拉·E.克罗蒂·亚历山大 9, 杰森·杜兰 15, 谢恩·克罗蒂 10, 11, 詹妮弗·M.丹 10, 11, 苏米塔·达斯 11† 和普拉迪普塔戈什4,13 † 附属机构:1 加州大学圣地亚哥分校儿科系。2 加州大学圣地亚哥分校雅各布工程学院计算机科学与工程系。3 加州大学圣地亚哥分校摩尔斯癌症中心。4 加州大学圣地亚哥分校细胞与分子医学系。5 美国斯克里普斯研究所免疫学与微生物学系,加利福尼亚州拉霍亚 92037。6 美国加州大学圣地亚哥分校医学系传染病科,加利福尼亚州拉霍亚 92037。7 美国斯克里普斯研究所 IAVI 中和抗体中心,加利福尼亚州拉霍亚 92037。8 美国斯克里普斯研究所 HIV/AIDS 疫苗开发联盟 (CHAVD),加利福尼亚州拉霍亚 92037。 9 加利福尼亚州拉霍亚,退伍军人事务部 (VA) 圣地亚哥医疗系统肺部重症监护科;加利福尼亚州拉霍亚,加利福尼亚大学圣地亚哥分校(UCSD)医学系肺部、重症监护和睡眠医学分部 10 美国加利福尼亚州拉霍亚,拉霍亚免疫学研究所 (LJI) 传染病和疫苗研究中心。11 美国加利福尼亚州拉霍亚,加利福尼亚大学圣地亚哥分校(UCSD)医学系、传染病和全球公共卫生分部。12 加利福尼亚大学圣地亚哥分校病理学系。13 加利福尼亚大学圣地亚哥分校医学系。14 加利福尼亚大学圣地亚哥分校外科系。15 加州大学圣地亚哥分校医学中心内科系心脏病学分部,拉霍亚 92037 * 同等贡献 † 共同通讯加州大学圣地亚哥分校儿科系助理教授;9500 Gilman Drive, MC 0730, Leichtag Building 132;La Jolla, CA 92093-0831。电话:858-246-1803:传真:858-246- 0019:电子邮件:dsahoo@ucsd.edu Soumita Das,博士;加州大学圣地亚哥分校病理学系副教授;9500 Gilman Drive, George E. Palade Bldg, Rm 256;La Jolla, CA 92093。电话:858-246-2062:电子邮件:sodas@ucsd.edu Pradipta Ghosh,医学博士;加州大学圣地亚哥分校医学和细胞与分子医学系教授; 9500 Gilman Drive (MC 0651),George E. Palade Bldg,232 室;La Jolla, CA 92093。电话:858-822-7633:电子邮件:prghosh@ucsd.edu
Ahmed W. Moawad 1, †,‡, ∗ ,Anastasia Janas 2,3,4, †,‡, ∗ ,Ujjwal Baid 5,6, †,‡, ∗ ,Divya Ramakrishnan 2,3, †,‡, ∗ ,Leon Jekel 12,3,7,8, †,‡, ∗ ,Kiril Krantchev 3,4, †,‡,§ ,Harrison Moy 2,3, †,‡,§ ,Rachit Saluja 9, †,‡ ,Klara Osenberg 2,3,10, †,‡ ,Klara Wilms 2,3,10, †,‡ 、Manpreet Kaur 2,3,11, ‡,§ 、Arman Avesta 2,‡ 、Gabriel Cassinelli Pedersen 2,3, ‡,§ 、Nazanin Maleki 2,3, †,‡ 、Mahdi Salimi 2,3, †,‡ 、Sarah Merkaj 2,3,12, ‡,§ 、Marc von Reppert 2,3,10, ‡,§ 、Niklas Tillmans 2,3,13, ‡,§ 、Jan Lost 2,3,13, ‡,§ 、Khaled Bousabarah 14, ‡,§ 、Wolfgang Holler 14, ‡,§ 、MingDe Lin 15, ‡,§ 、Malte Westerhoff 14, ‡,§ ,Ryan Maresca 16, ‡,§ ,Katherine E. Link 18, †,‡ ,Nourel hoda Tahon 19, †,‡ ,Daniel Marcus 20, ‡ ,Aristeidis Sotiras 20, ‡ ,Pamela LaMontagne 20, ‡ ,Strajit Chakrabarty 20, ‡ ,Oleg Teytelboym 1 ‡ ,Ayda Youssef 2, ‡ ,Ayaman Nada 19 ‡ ,Yuri S. Velichko 22, †, ‡ ,Nicolo Gennaro 22, ‡ ,Connectome Students 23, § ,Group of Annotators 24, § ,Justin Cramer 25, § , §§ , Derek R. Johnson 26, § , §§ , Benjamin Y. M. Kwan 27, § , §§ , Boyan Petrovic 28, § , §§ , Satya N. Patro 29, § , §§ , Lei Wu 30, § , §§ , Tiffany So 31, § , §§ , Gerry Thompson 32, § , §§ , Anthony Kam 33, § , §§ , Gloria Guzman Perez-Carrillo 34, §,§§ , Neil Lall 35, §,§§ , 批准者小组 23, § , Jake Albrecht 36, † , Udunna Anazodo 37, † , Marius George Lingaru 38, † , Bjoern H Menze 39, † , Benedikt Wiestler 40, † , Maruf Adewole 41, † , Syed Muhammad Anwar 38, † , Dominic Labella 42, † , Hongwei Bran Li 43, † , Juan Eugenio Iglesias 43, † , Keyvan Farahani 44, † , James Eddy 36, † , Timothy Bergquist 36, † , Verena Chung 36, † , Russel Takeshi Shinohara 45, † , Farouk Dako 46, † , Walter Wiggins 42, † , Zachary Reitman 42, † , 王春浩 42, † , 刘欣阳 38, † , 蒋志凡 38, † , Koen Van Leemput 47, † , Marie Piraud 48, † , Ivan Ezhov 49, † , Elaine Johanson 50, † , Zeke Meier 51, † , Ariana Familiar 52, † , Anahita Fathi Kazerooni 52, † , Florian Kofler 53, † , Evan Calabrese 42, †,‡ , Sanjay Aneja 16, † , Veronica Chiang 54, † , Ichiro Ikuta 25, †,‡ , Umber Shafique 55, †,‡ , §,§§ , Fatima Memon 2,3, †,‡,§, §§ , Gian Marco Conte 26, †, ‡ , Spyridon Bakas 5,6, †, ‡, ¶ , Jeffrey Rudie 56,57 ,†,‡ , §,§§, ¶ , Mariam Aboian 2,3, †,‡,§, §§, ¶,** 1. 宾夕法尼亚州达比仁慈天主教医疗中心 2. 耶鲁大学医学院放射科,康涅狄格州纽黑文 3. ImagineQuant,耶鲁大学医学院放射科,康涅狄格州纽黑文 4. 柏林夏里特大学医学院,德国 5. 宾夕法尼亚大学医学院生物医学图像计算与分析中心,宾夕法尼亚州费城 6. 宾夕法尼亚大学佩雷尔曼医学院放射科,宾夕法尼亚州费城 7. 德国癌症联盟 WTZ 转化神经肿瘤学分部、DKTK 合作站点、埃森大学医院,德国埃森 8. 德国癌症研究中心,德国海德堡 9.康奈尔大学,纽约州伊萨卡 10. 莱比锡大学,德国莱比锡 11. 路德维希马克西米利安大学,德国慕尼黑 12. 乌尔姆大学,德国乌尔姆 13. 杜塞尔多夫大学医学院诊断和介入放射学系,德国杜塞尔多夫 14. Visage Imaging, GmbH,德国柏林 15. Visage Imaging, Inc,美国加利福尼亚州圣地亚哥 16. 耶鲁大学医学院治疗放射学系,康涅狄格州纽黑文 18. 纽约大学医学院,纽约州纽约 19. 密苏里大学,密歇根州哥伦比亚
标题:剪接修饰药物的特异性、协同作用和机制作者:Yuma Ishigami 1,*、Mandy S. Wong 1,†,*、Carlos Martí-Gómez 1、Andalus Ayaz 1、Mahdi Kooshkbaghi 1、Sonya Hanson 2、David M. McCandlish 1、Adrian R. Krainer 1,‡、Justin B. Kinney 1,‡。附属机构:1. 冷泉港实验室,纽约州冷泉港,邮编 11724,美国。2. Flatiron 研究所,纽约州纽约,邮编 10010,美国。注:* 同等贡献。† 现地址:Beam Therapeutics,马萨诸塞州剑桥,邮编 02142,美国。 ‡ 通讯:krainer@cshl.edu (ARK)、jkinney@cshl.edu (JBK)。摘要:针对前 mRNA 剪接的药物具有巨大的治疗潜力,但对这些药物作用机制的定量理解有限。在这里,我们介绍了一个生物物理建模框架,可以定量描述剪接修饰药物的序列特异性和浓度依赖性行为。使用大规模并行剪接分析、RNA 测序实验和精确剂量反应曲线,我们将该框架应用于两种用于治疗脊髓性肌萎缩症的小分子药物 risdiplam 和 branaplam。结果定量地确定了 risdiplam 和 branaplam 对 5' 剪接位点序列的特异性,表明 branaplam 通过两种不同的相互作用模式识别 5' 剪接位点,并反驳了 risdiplam 在 SMN2 外显子 7 处活性的现行双位点假说。结果还更普遍地表明,单药协同作用和多药协同作用在促进外显子插入的小分子药物和反义寡核苷酸药物中广泛存在。因此,我们的生物物理建模方法阐明了现有剪接修饰治疗的机制,并为合理开发新疗法提供了定量基础。简介 替代性前 mRNA 剪接已成为药物开发的主要焦点 1-11。美国食品药品管理局批准的首个剪接校正药物是 nusinersen (又名 Spinraza™),它是一种反义寡核苷酸 (ASO),用于治疗脊髓性肌萎缩症 (SMA) 12–14。Nusinersen 通过结合 SMN2 前 mRNA 内含子 7 中的互补位点发挥作用,从而阻断剪接抑制剂 hnRNPA1/A2 的 RNA 结合,促进 SMN2 外显子 7 的包含,并挽救全长 SMN 蛋白表达。由于 nusinersen 分子较大且带负电荷,因此无法有效穿过血脑屏障,而是通过鞘内输送到脑脊液 14。小分子药物 risdiplam (又名 Evrysdi™ 或 RG7916;图 1A) 也被批准用于治疗 SMA 15–17。与 nusinersen 一样,risdiplam 可挽救 SMN2 外显子 7 的插入。与 nusinersen 不同,risdiplam 能够穿过血脑屏障,可以口服。结构数据显示,risdiplam 可结合并稳定由 5' 剪接位点 (5'ss) RNA 和 U1 snRNP 在特定 5'ss 序列处形成的复合物 18,19 。不过,RNA 序列编程 risdiplam 活性的定量方式尚未确定。使问题复杂化的是,两项研究表明 risdiplam 通过与外显子 7 内的第二个 RNA 位点结合进一步刺激 SMN2 外显子 7 的包含 18,20 ,并且该第二个 RNA 结合位点的存在显着增加了 risdiplam 对 SMN2 外显子 7 相对于人类转录组中所有其他 5'ss 的特异性。这种双位点假说已成为 risdiplam 药理特异性的主流解释 1,19,21–50 。然而,risdiplam 识别该第二个 RNA 位点的机制仍不清楚,该第二个 RNA 位点对 risdiplam 激活 SMN2 外显子 7 的定量影响也不清楚。第二种小分子药物 branaplam (又名 NVS-SM1 或 LMI070;图 1B) 也通过将 U1/5'ss 复合物靶向特定的 5'ss 序列来促进 SMN2 外显子 7 的包含 18,51,52。Branaplam 最初是为治疗 SMA 而开发的,但似乎比 risdiplam 具有更多的脱靶效应 18,21,因此不再用于此适应症 53。根据 risdiplam 的双位点假说,有人提出,相对于 risdiplam,branaplam 的脱靶行为增加至少部分是由于 branaplam 不与 SMN2 外显子 7 内的第二个位点结合 18。幸运的是,branaplam 的一个脱靶效应是激活基因 HTT 中的毒性伪外显子。因此,branaplam 被提议作为亨廷顿氏病的潜在治疗方法 54–57。 branaplam 的另一个脱靶位点,即基因 SF3B3 中的伪外显子,也布拉纳普兰不与 SMN2 外显子 7 18 内的第二个位点结合。巧合的是,布拉纳普兰的一个脱靶效应是激活基因 HTT 中的有毒伪外显子。因此,布拉纳普兰已被提议作为亨廷顿氏病的潜在治疗方法 54–57 。布拉纳普兰的另一个脱靶效应,即基因 SF3B3 中的伪外显子,也布拉纳普兰不与 SMN2 外显子 7 18 内的第二个位点结合。巧合的是,布拉纳普兰的一个脱靶效应是激活基因 HTT 中的有毒伪外显子。因此,布拉纳普兰已被提议作为亨廷顿氏病的潜在治疗方法 54–57 。布拉纳普兰的另一个脱靶效应,即基因 SF3B3 中的伪外显子,也
