摘要。许多来自动物的成分已广泛分布在食品,药物和化妆品配方中,这些食物可能会因宗教限制而引起问题。因此,特定物种的检测已成为穆斯林,犹太人,印度教徒,素食主义者和素食社区的重要问题。为此目的应用了一些方法,例如光谱,色谱和基于DNA的方法。但是,这些方法使用复杂的技术,因此需要高技能和成本来进行工业实践。研究需要鼓励开发简单和便携式工具。本文强调了Maillard反应对食物中动物衍生物的物种特异性检测的效力,尤其是对于明胶。明胶揭示了不同的氨基酸组成。它将产生各种活性化合物的感觉,例如颜色,气味和味道,在经受Maillard反应后,取决于反应物质和反应条件。差异将是特定于物种明胶来源的关键原理。
我们的发现表明,使用的氨基酸类型,具体取决于其离子结构,序列和氨基酸组成,分子修饰和分子相互作用,会影响Maillard产物的抗菌群特性[27]。这些产物由不同的组合(黑色素素)制成,并且具有不同的能力以抑制致病性微生物的生长。是黑色素蛋白的抗虫骨质特性变化的潜在原因之一。的确,Mela Noidin的抗菌活性可能与其结构相关。黑色素素是一种复杂的聚合物,具有未知确切的结构,但是与细菌膜损伤相关的金属螯合可能是其抗菌活性背后的机制。我们假设用来制造Mela Noidin的氨基酸类型会影响其螯合物的能力。金属离子和聚二烯在螯合期间建立坐标,其中一些循环分组的原子三明治金属原子在其中形成螯合络合物。The hemolytic effect of the different concentration of three combination of the Maillard products (Gly-Glu), (Val-Glu) and (Try-Glu) (Figure 4) showed that these all products present a very weak toxic effect on isolated erythrocytes, with a rate of hemolysis that does not exceed 12.09 % at a hight concentration of MRPs tested of 390 mg/ml compared to the total hemolysis.of positive 控制。它们可能是治疗和药理的非常重要的来源。
摘要。热处理的过程通常用于食品加工中,以改善微生物的颜色,风味,营养和安全性,同时也降低了有毒化学风险的潜力。但是,研究人员已经确定了与食品加热过程中发生的食品中Maillard反应有关的潜在风险。Maillard的反应分为三个阶段:初始阶段(例如在牛奶和UHT牛奶中),中级阶段(如啤酒和面包店中的产品)和高级阶段(如在啤酒,咖啡,咖啡和巧克力中所示)。Maillard反应受物理变量(例如温度和治疗时间)和化学变量(包括pH,水活动和物质)的影响。丙烯酰胺是在Maillard反应过程中可以形成的有毒化学风险之一。通过涉及天冬酰胺和羰基的主要途径,会导致N-甘油羟基 - 天冬酰胺的形成。此外,也可以通过氧化的丙烯醛和脂质氧化形成丙烯酰胺。本评论文章使用了在线搜索引擎,例如ScienceDirect,Google和ResearchGate作为文献研究方法。
空中客车服务 2019 年 6 月 19 日 Philippe MHUN - 计划和服务执行副总裁 Rémi MAILLARD - 空中客车服务高级副总裁
空中客车服务公司 2019 年 6 月 19 日 Philippe MHUN - 项目与服务执行副总裁 Rémi MAILLARD – 空中客车服务公司高级副总裁
参考文献1。KDIGO 2021肾小球疾病治疗的临床实践指南。肾脏INT 2021; 100:S1-S276; 2。投手D,Braddon F,Hendry B,Mercer A,Osmaston K,Saleem MA,Steenkamp R,Wong K,Turner AN,Wsang K,Gale DP,Gale DP,Barratt J.IgA肾病的长期结局。 cjasn 2023; 18:727-38; 3。 Koopman Jje,Van Essen MF,Rennke HG,De Vries APJ,Van Kooten C.在健康和患病的肾脏中膜攻击复合物的沉积。 前疫苗2021; 11:599974; 4。 le Stang MB,Gleeson PJ,Daha MR,Monteiro RC,Van KootenC。 从初始观察到潜在的补体靶向疗法。 MOL IMMUNOL 2021; 140:1-11; 5。 Novak J,Barratt J,Julian BA,Renfrow MB。 IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。IgA肾病的长期结局。cjasn 2023; 18:727-38; 3。Koopman Jje,Van Essen MF,Rennke HG,De Vries APJ,Van Kooten C.在健康和患病的肾脏中膜攻击复合物的沉积。前疫苗2021; 11:599974; 4。le Stang MB,Gleeson PJ,Daha MR,Monteiro RC,Van KootenC。从初始观察到潜在的补体靶向疗法。MOL IMMUNOL 2021; 140:1-11; 5。 Novak J,Barratt J,Julian BA,Renfrow MB。 IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。MOL IMMUNOL 2021; 140:1-11; 5。Novak J,Barratt J,Julian BA,Renfrow MB。 IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。Novak J,Barratt J,Julian BA,Renfrow MB。IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。IgA肾病中IgA1分子的异常糖基化。Semin Nephrol 2018; 38(5):461-76; 6。Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J.当前对补体在IgA肾病中的作用的理解。J Am Soc Nephrol 2015; 26:1503-12。
来自:Maillard JY的数据。2013。影响微生物活性的因素。 in:Fraise AP等。 (eds)。 Russell,Hugo&Ayliffe的消毒,保存和灭菌的原则和实践,第5版。 2013; McDonnell G.2020。 微生物和抗性。 in:第6版的块消毒,灭菌和保存; Quinn PJ等。 在兽医中预防和控制疾病的消毒和生物安全性。 in:块的消毒,灭菌和保存。影响微生物活性的因素。in:Fraise AP等。(eds)。Russell,Hugo&Ayliffe的消毒,保存和灭菌的原则和实践,第5版。2013; McDonnell G.2020。微生物和抗性。in:第6版的块消毒,灭菌和保存; Quinn PJ等。在兽医中预防和控制疾病的消毒和生物安全性。in:块的消毒,灭菌和保存。
来自:Maillard JY的数据。2013。影响微生物活性的因素。 in:Fraise AP等。 (eds)。 Russell,Hugo&Ayliffe的消毒,保存和灭菌的原则和实践,第5版。 2013; McDonnell G.2020。 微生物和抗性。 in:第6版的块消毒,灭菌和保存; Quinn PJ等。 在兽医中预防和控制疾病的消毒和生物安全性。 in:块的消毒,灭菌和保存。影响微生物活性的因素。in:Fraise AP等。(eds)。Russell,Hugo&Ayliffe的消毒,保存和灭菌的原则和实践,第5版。2013; McDonnell G.2020。微生物和抗性。in:第6版的块消毒,灭菌和保存; Quinn PJ等。在兽医中预防和控制疾病的消毒和生物安全性。in:块的消毒,灭菌和保存。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
基于糖蜜的酿酒厂会产生大量的花费,这是一种主要的环境污染物,由于其高的有机负荷和深棕色。这种颜色主要是由黑色素蛋白引起的,黑色素蛋白是通过Maillard反应形成的,Maillard反应是糖和氨基酸之间的非酶促过程。在这项研究中,从40个分离株中选择了八种有希望的细菌菌株,并指定为S1,S2,S3,S4,S5,S5,S6,S7和S8。这些分离株被筛选,以使用定性和定量分析,使酿酒厂消失的洗涤液脱色。中,分离株S5在不同的洗涤浓度(10%,20%和40%)中表现出最高的脱色潜力。值得注意的是,在10%的浓度下,分离株S5完全(100%)脱色,使其成为本研究中最有效的菌株。基于初步表征,分离株S5试初步鉴定为倾斜物种。其特殊的脱色能力表明,它在酿酒厂的生物修复中具有巨大的商业应用潜力。有关优化环境条件并扩大过程的进一步研究,可以为生态友好且具有成本效益的解决方案铺平道路,以减轻酿酒厂废水的环境影响。简介糖蜜酿酒厂是工业污染的主要因素,产生了大量的高强度废水,其生化氧需求(BOD)和化学氧需求(COD)显着升高。这些分离株通过定性和定量分析筛查了消耗清洗的能力。酿酒厂花费的洗涤物中的主要污染物之一是黑色素素,这是一种复杂的化合物,它是通过maillard反应形成的,是糖和氨基酸之间的非酶相互作用。黑色素素特别关注的是,通过减少水体的光渗透,改变微生物生态系统并抑制植物的生长,从而有助于环境降解。[1]在这项研究中,从总共40个分离株中选择了八种有希望的细菌菌株,并指定为S1,S2,S3,S4,S4,S5,S6,S7和S8。中,分离株S5在不同的洗涤浓度(10%,20%和40%)时表现出最高的脱色潜力。值得注意的是,在10%的浓度下,分离株S5在指定时期内达到100%脱色,使其成为最有效的应变。初步鉴定分离株S5作为planococcus物种,强调了其在生物修复中的商业应用的潜力。鉴于其效率,进一步的研究应着重于优化环境参数,并扩大工业应用的脱色过程。成功实施这种微生物方法可以提供