图片说明 - 2024 年 2 月 8 日,空中客车印度和南亚总裁兼董事总经理 Rémi Maillard 在印度新德里向印度民航和钢铁部部长 Shri Jyotiraditya M Scindia 展示 A220 飞机模型,印度民航和公路运输及公路国务部长 VK Singh 将军(已退休)和 Dynamatic Technologies 首席执行官兼董事总经理 Udayant Malhoutra 出席了此次会面。为大力推动印度政府的“印度制造”愿景,空中客车已将其 A220 系列飞机舱门的制造和组装合同授予位于班加罗尔的 Dynamatic Technologies。这是印度获得的最大航空航天出口合同之一。
糖尿病中的慢性高血糖状态导致葡萄糖和蛋白质,DNA和脂质之间的共价加合物通过称为Maillard反应的非酶过程形成。此过程导致形成高级糖基化末端产品(年龄)。3晚期终端产物是不可逆的大分子,并通过年龄受体(RAGE)发挥其生物学活性。4年龄之间的相互作用与愤怒之间的相互作用破坏了内皮细胞中氧化 - 还原反应,并触发炎症和血栓形成反应。狂暴,高度涉及促炎性反应和自身免疫性,有助于糖尿病血管病,炎症和动脉粥样硬化过程的进展。5,6此外,年龄段轴可导致活性氧(ROS)的产生增加,而低密度脂蛋白(LDL)的氧化,加剧的斑块形成。7
抽象的颜色是确定消费者购买渴望和肉质质量的重要指标的重要因素。加工和存储过程会影响肉类产品的颜色。因此,研究如何改善肉类产品的颜色不仅可以提高肉类产品的质量,而且可以增强消费者购买的愿望。硝基瘤蛋白是在肉类产品中发挥颜色的主要物质。同时,肉类产品在固化过程中经历了一系列化学和物理变化,这也影响了腌制肉类产品的颜色。本文回顾了目前影响腌制肉类颜色的六个主要因素:(1)生肉的质量和肌红蛋白的含量; (2)肌肉的物理结构和出色的像差; (3)脂质氧化; (4)Maillard反应; (5)添加剂; (6)包装方法。此外,本文还探讨了pH,温度,保留水和固化肉类产品的关系,以便为研究固化肉类产品的颜色研究提供更多想法。
晚期糖基化终产物(年龄)是一组多种化合物,是由于蛋白质或其他生物分子中还原糖(例如葡萄糖)和氨基酸的游离NH2基团之间的非酶酸反应而形成的。产生这些产物的化学反应被称为Maillard反应,并且是人体正常代谢的一部分。由于高血糖引起的糖尿病期间,这种反应得到了增强,但在制备,加工和保存某些食物期间也可能发生。因此,也可以从饮食(D-AGE)中获得年龄,并有助于增加这些化合物的总血清库。它们与多种病理过程有关,主要是因为它们诱导炎症反应和氧化应激增加的能力。它们是正常衰老的一部分,尤其是在富含半衰期蛋白的组织中,它们被广泛积累,这会损害这些组织的生理。d-ages在富含加工脂肪和糖的饮食中丰富。本综述涉及当前对这些产品的知识及其对各种机制的免疫调节的影响,这些机制可能有助于糖尿病病理生理学。
葡萄糖基化血红蛋白测试(HBA1C)是糖尿病患者(DM)患者长期血糖控制的有用的,经济和实用的临床工具。 div>从历史上看,自1955年以来,HBA1C首先被Kunkel和Wallenius描述为人类血红蛋白的一小部分。 div>然而,直到70年代,该分子被识别为血糖控制标记。 div>HbA1c是一种结合蛋白(杂蛋白,血红蛋白 - 葡萄糖),该蛋白是通过非酶和跟踪后的过程称为糖化(Maillard反应)作为Amadori稳定产物的。 div>如果反应继续进行,最终结果是不可逆的产品,称为最终糖化产物(年龄)。 div>年龄负责修饰所有组织的蛋白质,并促进由年龄接收器和DM的并发症介导的炎症反应。 div>也,低于7%的HBA1C水平与微血管和大血管病变的减少有关。 div>对HBA1C水平的适当常规评估和监测将允许足够的血糖控制,并有助于降低未来并发症的风险。 div>
摘要:黑色素蛋白是通过长时间和强烈的加热在食品中生产的最终的maillard反应产物(蛋白质 - 碳水化合物复合物)。我们评估了大麦麦芽中黑色素蛋白消费对肠道菌群的影响。七十只小鼠分为五组,在那里对照组消耗非黑素蛋白麦芽饮食,而其他组则以25%的增量为25%至100%的黑色素麦芽糖。粪便进行采样,并使用V4细菌16S rRNA扩增子测序和短链脂肪酸(SCFA)确定菌群。发现黑色素蛋白增加会导致肠道微生物蛋白质发散显着,并支持持续的SCFA产生。dorea,振荡杆菌和静脉曲张的相对丰度减少了,而乳酸杆菌,帕拉索氏菌,阿克氏菌,双杆菌和barnesiella则增加了。双杆菌属。和Akkermansia spp。在消耗黑色素素量最高的小鼠中显着增加,这表明益生元的潜力显着。
使用聚合物电解质膜 (PEM) 进行电解的前景十分光明。[4,5] 缺点是,发生在阳极的氧析出反应 (OER) 表现出缓慢的动力学,因此妨碍了高效的整体电化学水分解。[5,6] 大规模电解需要价格实惠且活性高的电催化剂。[7] Ir-[8–10] 和 Ru-[11,12] 材料在酸性电解质中表现出最高的催化 OER 活性。由于其更高的稳定性,Ir-基催化剂代表了最先进的阳极材料。 [8,13,14] 为了提高活性贵金属的利用率,人们尝试了不同的方法,如将 IrOx 与地球上储量丰富的金属氧化物(TiO2、[15] Ta2O5、[16] SnO2[17])合金化,将 IrOx 以纳米晶体的形式分散在高表面积载体材料上(Sb 掺杂的 SnO2[18]),或通过模板工艺引入明确的纳米结构。[10,19] 然而,在添加绝缘过渡金属氧化物(如 TiO2[20] 或 Ta2O5)后,电导率经常会下降。[21] 至于载体材料的稳定性,掺杂已被证明可以提高耐腐蚀性,但大多数载体材料在酸性下稳定性较差。 [22] 感兴趣的读者可以参阅 Maillard 等人撰写的一篇综合评论。[23]
使用聚合物电解质膜 (PEM) 进行电解的前景十分光明。[4,5] 缺点是,发生在阳极的氧析出反应 (OER) 表现出缓慢的动力学,因此妨碍了高效的整体电化学水分解。[5,6] 大规模电解需要价格实惠且活性高的电催化剂。[7] Ir-[8–10] 和 Ru-[11,12] 材料在酸性电解质中表现出最高的催化 OER 活性。由于其更高的稳定性,Ir-基催化剂代表了最先进的阳极材料。 [8,13,14] 为了提高活性贵金属的利用率,人们尝试了不同的方法,如将 IrOx 与地球上储量丰富的金属氧化物(TiO2、[15] Ta2O5、[16] SnO2[17])合金化,将 IrOx 以纳米晶体的形式分散在高表面积载体材料上(Sb 掺杂的 SnO2[18]),或通过模板工艺引入明确的纳米结构。[10,19] 然而,在添加绝缘过渡金属氧化物(如 TiO2[20] 或 Ta2O5)后,电导率经常会下降。[21] 至于载体材料的稳定性,掺杂已被证明可以提高耐腐蚀性,但大多数载体材料在酸性下稳定性较差。 [22] 感兴趣的读者可以参阅 Maillard 等人撰写的一篇综合评论。[23]
Mr. Asimus Erik, Surgical pathology Ms. Bennis-Bret Lydie, Biological and Medical Physics and Chemistry Miss Bibbal Delphine, Hygiene and food industry of animal origin Ms. Bouhsira Emilie, parasitology, parasitic diseases Miss Cadiergues Marie-Christine, Dermatology M. Conchou Fabrice, Medical Imagery M. Ruminants M. Cuevas Ramos Gabriel, Equine surgery Ms. Daniels Hélène, Microbiology Infectious-Pathology Miss Deviers Alexandra, Anatomy-Imémagerie Miss Ferran Aude, Physiology M. Guerin Jean-Luc, Breeding and Health Published and Cunicolese M. Jaeg Jean-Philippe, Pharmacie and toxicology Miss Lacoline, Pathological of rent animals Miss Lavoue Rachel, Internal Medicine Mr. Lienard Emmanuel,《寄生学和寄生虫病》,Maillard Renaud先生,反刍动物Meynadier Meynadier Meynadier Meynadier Meynaud-Collard Patricia女士,手术病理学,Mogicicato Giovanni先生,解剖学家禽和养猪场的健康管理Pradier Sophie夫人,Equidae M. Raboisson Didier的内科,动物制作(反刍动物)m。Volmour Romain,微生物学和感染力学先生Verwaerde Patrick先生,麻醉,复苏女士Waret-SzkutaAgnès女士,生产和病理学猪
高级糖基化终产物(年龄)积聚在大脑中,导致神经退行性疾病,例如阿尔茨海默氏病(AD)。AD的病理生理受到年龄的受体的影响和Toll-Hody Foceor 4(TLR4)。蛋白质糖基化通过一系列复杂的反应导致不可逆转的年龄,涉及Schiff碱的形成,Amadori反应,其次是Maillard反应,后者会导致脑葡萄糖代谢异常,氧化应激,氧化功能不良,氧化功能不良,线粒体不良,斑块沉积和神经元死亡。淀粉样斑块和其他刺激激活巨噬细胞,这些巨噬细胞是AD发育中至关重要的免疫细胞,触发炎症分子的产生,并促进该疾病的发病机理。AD的风险因动脉粥样硬化,痴呆,高龄和2型糖尿病性麦芽菌(DM)的风险因素增加了一倍。随着个体的年龄,由于糖氧化酶水平降低和年龄累积的增加,神经系统疾病(例如AD)的流行率增加。胰岛素在蛋白质的作用上影响了AD样TAU磷酸化和淀粉样β肽清除的标志,从而影响脂质代谢,炎症,血管反应性和血管功能。高运动组框1(HMGB1)蛋白是神经炎症反应的关键引发剂和激活因子,与神经退行性疾病(如AD)的发展有关。发现TLR4抑制剂可改善记忆力和学习障碍并减少β积累。饮食和生活方式的改变也会减慢广告的进展。需要针对年龄相关途径的新的治疗方法。对抗糖化剂,晚期糖基化终产物(RAGE)抑制剂的受体和破损的治疗研究为干预策略提供了希望。
