通过独立组件分析(ICA)的数据分解通常应用于生物物理和神经生理学数据,以删除造影和/或单独的大脑源活性,例如在脑电图(EEG)和fMRI数据中(Makeig等,1995; McKeown等; McKeown等; Makeig等,1995; McKeown et al。,1998)。ICA将数据矩阵作为输入(EEG时间课程或fMRI MAPS)提取组件“激活”(eeg的组件时间课程或fMRI的组件课程),由“ unmixing”矩阵定义。通过取消矩阵的倒数,可以将原始数据矩阵表示为这些组件“激活”的线性组合。但是,ICA作为一种盲源分离方法,不应盲目应用。有几个假设可以证明将独立组件分析(ICA)合理为给定的数据。
移动大脑和身体成像 (MoBI;Gramann 等人,2011) 研究方法的出现提供了前所未有的机会,可以脱离人工实验室环境,直接在现实环境中研究认知过程 (De Vos、Gandras 和 Debener,2014;Gramann、Jung、Ferris、Lin 和 Makeig,2014;Makeig、Gramann、Jung、Sejnowski 和 Poizner,2009)。在过去十年中,传感器微型化技术取得了进展,提高了研究级身体和神经成像硬件的便携性 (Mcdowell 等人,2013),从而允许在实验室外长时间记录大脑数据 (Hölle、Meekes 和 Bleichner,2021)。更确切地说,移动 EEG 和移动眼动追踪 (ET) 开辟了新的研究途径,可以更好地了解人们在现实世界中的思维和行为方式。利用此类移动研究方法所带来的激动人心的前景激发了人们对开发新型信号处理方法的兴趣(Reis、Hebenstreit、Gabsteiger、von Tscharner 和 Lochmann,2014 年)。总之,这些发展使得人们能够直接在自然环境中研究人类认知(Ladouce、Donaldson、Dudchenko 和 Ietswaart,2017 年),以解决广泛研究领域的基础和应用问题,例如体育科学(Park、Fairweather 和 Donaldson,2015 年)、建筑(Djebbara、Fich 和 Gramann,2019 年)和城市规划(Birenboim、Helbich 和 Kwan,2021 年)、神经人体工程学(Gramann 等人,2021 年;Dehais、Karwowski,
图 1. (a) ISAE-SUPAERO 的三轴运动飞行模拟器。(b) 双耳 cEEGrid 电极的定位,标有记录参考(蓝色)和 DRL(绿色)电极。右侧网格上的电极 R4a 和 R4b 未在我们的设置中记录。布局改编自 EEGLAB (v.2019.1)(Delorme and Makeig,2004)中的 cEEGrid 插件(Martin G. Bleichner,2019)。(c) 清洁和准备参与者的皮肤后,将左耳网格贴在参与者耳朵周围时的定位。(d) 带有来自 Enobio 设备的针脚的干电极(左)的图示,以及用具有硅胶稠度的固体凝胶封装的相同电极(右),以避免不适甚至疼痛。
工作记忆等执行性认知功能决定了各种不同认知任务的成败,如解决问题、导航或规划。通过从神经生理或心理生理信号估计工作记忆负荷或记忆容量等结构,自适应系统可以对操作员经历的认知状态作出反应,并触发旨在支持任务执行的响应(例如,当受试者超负荷时简化辅导系统的练习 Gerjets et al., 2014 ,或关闭来自手机的干扰)。确定工作记忆负荷等认知状态也可用于自动测试/评估或可用性评估。虽然目前有大量关于工作记忆活动等认知功能的神经和生理相关性的研究,但很少有出版物涉及将这些研究应用于复杂、现实场景中的单次试验检测和实时估计认知功能。基于脑活动测量的单次试验分类器,例如脑电图 (EEG, Kothe and Makeig, 2011; Lotte et al., 2018)、功能性近红外光谱 (fNIRS, Putze et al., 2014; Herffi et al., 2015)、生理信号 (Fairclough et al., 2005; Fairclough, 2008) 或眼动追踪 (Putze et al., 2013),有可能对情感 (Koelstra et al., 2010; Heger et al., 201
工作记忆等执行认知功能决定了各种不同认知任务的成败,如解决问题、导航或规划。通过从神经生理或心理生理信号估计工作记忆负荷或记忆容量等结构,自适应系统可以对操作员经历的认知状态作出反应,并触发旨在支持任务执行的响应(例如,在受试者超负荷时简化辅导系统的练习 Gerjets et al., 2014 ,或关闭来自手机的干扰)。确定工作记忆负荷等认知状态对于自动测试/评估或可用性评估也很有用。虽然目前有大量关于工作记忆活动等认知功能的神经和生理相关性的研究,但很少有出版物涉及这类研究在复杂、现实场景中的单次试验检测和实时估计认知功能方面的应用。基于脑活动测量的单次试验分类器,例如脑电图 (EEG, Kothe and Makeig, 2011; Lotte 等人, 2018)、功能性近红外光谱 (fNIRS, Putze 等人, 2014; Herffiet al., 2015)、生理信号 (Fairclough 等人, 2005; Fairclough, 2008) 或眼动追踪 (Putze 等人, 2013),有可能根据短段数据对情感 (Koelstra 等人, 2010; Heger 等人, 2014; Mühl 等人, 2014) 或认知状态进行分类。为此,需要开发信号处理和机器学习技术并将其转移到现实世界的用户界面。这个前沿研究主题的目标是推动基于信号的认知过程建模的最新进展。我们对更复杂、更现实的研究设计特别感兴趣,例如在野外收集数据或调查相互作用
非侵入性脑部计算机界面(BCIS)是一种令人兴奋的技术,它为大脑与计算机之间的通信提供了通道。bcis可用于交流(Brumberg等,2018; Chaudhary等,2016),康复(Cervera等,2018),娱乐设备(Gürkök等,2017),以及其他应用程序(Finke等,2009; Makeig et e e e ectig et al。,2011)。在本研究主题的第一卷(Daly等,2021)中,我们发布了包括通过多种模式和BCI范式记录的信号的数据集,包括新型事件相关电位(ERP)(ERP)和基于稳态的视觉诱发电位(SSVEP)基于BCIS的bcis,Motor bcis,Motory bcis,BCIS,BCIS,BCIS,a bciiss a a,a bcis,a bciS a效率,效果,尼古丁成瘾的BCIS以及静止状态数据。但是,BCI的研究正在不断发展,对新的公开数据集的需求越来越不断发展。的确,BCI技术的持续发展取决于许多不同的研究领域的进步,这些研究领域可以单独和集体地改善BCI系统的各个方面,包括信号获取,处理,分类,分类和用户界面设计。尽管如此,只有少数高质量的公共可用数据集可以在这些数据集上开发,评估和比较新的系统,工具和技术。此外,这些数据集的大小和数量相对较小,将过度拟合的风险引入了使用这些数据集开发和评估的方法。为了继续应对这一挑战,该研究主题提供了第二个出版物和相应数据集的集合。换句话说,BCI研究的可靠性和可重复性可能会因缺乏和稀疏性数据集而阻止。他们报告了在世界各地BCI研究实验室的开发,培训和评估过程中记录的生理数据集。用脑电图(EEG)和附近的红外光谱(FNIRS)收集数据。刺激范围内的刺激表现涵盖了不同的感觉方式。Botrel等人的文章。描述了一项关于神经反馈范式中关于α下调和
非侵入性脑部计算机界面是一种令人兴奋的新技术,为大脑和计算机系统之间的通信提供了渠道。它们可以用作通信设备(Chaudhary等,2016; Brumberg et al。,2018),康复系统(Cervera等,2018),娱乐设备(Gürkök等,2017),以及其他广泛的应用程序(Finke等,2009,2009; Makeig et al。,2011)。非侵入性BCIS的研究正在迅速发展,并且是一个高度多学科的领域,其中包括神经科学家,工程师,心理学家,计算机科学家和临床医生。持续开发BCI技术取决于这些领域的每个领域的进步,它们可以单独和集体地有助于改善BCI系统的所有方面,包括信号获取,处理,分类,分类和用户界面设计。BCI系统的许多单个部分通常是在预先存在的数据集上首次开发和评估。但是,只有少数高质量的公开数据集可以在这些数据集上进行新的系统,工具和技术的评估和比较。例如,公开可用的BCI竞争数据集(Sajda等,2003; Blankertz等,2004,2006)为BCI研究人员提供了一套出色的资源,并已广泛使用许多研究人员来开发和评估新的信号处理和分类方法(Arvaneh等人,2013年,2013年; Ghaemi等,2017年; Sakhavi等人,2018年; Zanini等人,2018年;换句话说,BCI研究的可靠性和可重复性因缺乏和稀疏性数据集而阻碍。然而,相对较小的大小和此类数据集的数量会引入过度拟合的风险,以通过这些数据集开发和评估的方法。本期特刊提供了一系列在世界各地BCI研究实验室的开发,培训和评估期间记录的公开生理数据集的描述。收集到的数据集由通过多种模式记录的信号组成,包括但不限于脑电图(EEG),功能近近红外光谱(FNIRS),肌电图(EMG),心电图学(ECG)(ECG)(ECG),钙含量皮肤反应(GSR),皮肤温度测量率和体内的数据,次要次数和体内。许多数据集都包含具有这些信号模态的两个或多个组合的多模态记录。描述了来自各种不同BCI范式的数据。这些包括基于新型事件相关电位(ERP)和基于稳态的视觉诱发电位(SSVEP)BCIS
脑机接口 (BCI) 是一种新兴的交互式通信方法,通过解码大脑活动产生的信号,实现对假肢和外部设备的神经控制,以及中风后运动康复。这种最先进的技术有可能彻底改变生活的各个方面,并显着提高整体生活质量。BCI 具有广泛的应用范围,从医疗援助到人类增强(Ahmed 等人,2022 年;Altaheri 等人,2023 年)。通常,脑电图 (EEG) 信号反映大脑的电活动,并通过在头皮上放置电极阵列来非侵入式地记录。获得真实值(时间和通道)二维 EEG 信号矩阵使人与外部设备之间的直接通信成为可能(Graimann 等人,2010 年)。运动想象 (MI) 是一种思考如何移动身体的某个部位而不移动身体的活动。基于 EEG 的 MI 活动已广泛应用于车辆控制、无人机控制、环境控制、智能家居、安全和其他非医疗领域(Altaheri 等人,2023 年)。然而,解码 MI-EEG 信号仍然是一项具有挑战性的任务。在此任务中,其他生理信号(例如面部肌肉活动、眨眼和环境中的电磁干扰)会污染记录的 MI-EEG 信号并导致信噪比低(Lotte 等人,2018 年)。MI-EEG 模式的个体差异受到参与者大脑结构和功能差异的影响。此外,EEG 系统在信号通道之间表现出一定程度的相关性,这进一步使信号处理过程复杂化(Altaheri 等人,2022 年)。在对 EEG 信号进行分类和识别的传统方法中,通常依赖于领域特定知识。这导致人们更加关注开发有效的特征提取和分类技术,这主要是由于 EEG 信号固有的低信噪比( Huang et al., 2019 )。人们通常使用各种特征提取方法,包括独立成分分析( Barbati et al., 2004 ; Delorme and Makeig, 2004 ; Porcaro et al., 2015 ; Ruan et al., 2018 )、小波变换( Xu et al., 2018 )、共同空间模式( Gaur et al., 2021 )和经验模态分解( Tang et al., 2020 )。在对 EEG 信号进行预处理后,从处理后的信号中提取基本特征并输入分类器以确定输入实例的类别( Vaid et al., 2015 )。传统的特征提取方法通常涉及手工设计的特征提取器,例如滤波器组共享空间模式 (FBCSP) (Ang et al., 2008) 或黎曼协方差 (Hersche et al., 2018) 特征。Ang et al.(2012)使用滤波器组公共空间模式(FBCSP)算法来优化MI-EEG上公共空间模式(CSP)的受试者特定频带,然后采用基于互信息的最佳个体特征(MIBIF)算法和基于互信息的粗糙集约简(MIRSR)算法从信号中提取判别性的CSP特征。最后,我们使用CSP算法进行分类并获得了良好的性能。值得注意的是,所有这些步骤都非常耗时。虽然传统方法通过预处理方法提高了EEG信号的信噪比,但从不同时间戳和受试者采集的EEG信号通常