蚊子(Diptera:culicidae)是现有180-220万年前存在的主要节肢动物群体(Gabriel等,2014; Bird and Mc Elroy 2016; Benelli and Durggan 2018; Hillary and Ceasar and Ceasar 2021)。蚊子属于两个亚家族(Gabriel等人,2014年):Anophelinae(Anopheles)和Culicinae(Aedes,culex,使用的油脂和曼氏菌),由于其广泛的发生,对人类和动物构成了严重威胁。这两个亚家族是向登革热,chikungunya,Zika,Zika,Zika,Zika,Zika,Mallaria,疟疾,日本脑炎和丝虫病之前传播疾病的媒介(Gabriel等,2014; Bird and Mc Elroy 2016; Benelli and McElroy 2016; Benelli and Durggan 2018; Hillary and Ceasar and Ceasar 20221; obembe et; obembe et; obembe et;他们危及世界上热带和亚热带地区的人们的生命。已经证实,由于这些疾病传播的蚊子,世界一半人口的风险更高(WHO,2015年)。
疟疾仍然是一项重大的公共卫生挑战,需要准确的预分辨率模型,以告知塞拉利昂的有效干预策略。本研究比较了Holt-Winters的指数平滑,谐波和人工神经网络(ANN)模型的性能,该数据使用2018年1月至2023年12月的数据进行了比较,并结合了塞拉利昂健康管理信息系统(HMIS)的历史案例记录,以及包括湿度,沉淀和温度的气象学变量。ANN模型表现出卓越的性能,在包括气候变量之前达到了4.74%的平均绝对百分比误差(MAPE)。随着气候变量的包含,这将进一步降低至3.9%,它超过了传统模型,例如Holt-Winners and Harmonic,分别产生了22.53%和17.90%的MAPES。ANN的成功归因于其在数据中捕获复杂的,非线性关系的能力,当时与相关的气候变量增强时特别是。使用优化的ANN模型,我们预测了接下来24个月的疟疾病例,预测从2024年1月到2025年12月的稳定增加,季节性峰值。这项研究强调了在流行病学建模中的机器学习方法,特别是ANNS的潜力,并突出了将环境因素整合到疟疾预测模型中的重要性,推荐ANN模型,以告知更有针对性,有效的疟疾控制策略以改善Sierra Leone和Sirra和Sim-sim-erilra-cil-ial-cil-ial-ial-ial-ial-ial-ial-ial-ial-cor-ial-for。关键字
专家审查小组(ERP):专家审查小组是由WHO基本药品和药品部门主持的外部技术专家组成的独立技术机构,旨在审查与未经Qualqualififififififice或SRA/WLA的使用相关的FPP相关的潜在风险/福利,或者允许允许其允许全球基金进行裁决。ERP审查的产品可以在有限的时间内(最多12个月)购买。 但是,在某些情况下,可以延长建议期。 与ERP审查产品的供应商/制造商的合同不应比该产品建议的有效期更长。 有关ERP流程和质量保证信息的详细信息,请参阅https://www.theglobalfund.org/en/sourcing-management/quality-assurance/。ERP审查的产品可以在有限的时间内(最多12个月)购买。但是,在某些情况下,可以延长建议期。与ERP审查产品的供应商/制造商的合同不应比该产品建议的有效期更长。有关ERP流程和质量保证信息的详细信息,请参阅https://www.theglobalfund.org/en/sourcing-management/quality-assurance/。
疟疾仍然是撒哈拉以南非洲地区的一个关键公共卫生问题,占全球疟疾病例和死亡人数的首位。在肯尼亚,尽管治疗手段日益普及,疟疾仍然是主要的致病原因,尤其是在西部和沿海地区。以青蒿素为基础的联合疗法 (ACT) 是治疗无并发症疟疾的一线疗法,但其有效性在很大程度上取决于社区层面的接受和适当使用。[1] Hetzel 等人 (2008) [2] 的研究强调了坦桑尼亚农村地区有效治疗疟疾的障碍,例如医疗保健服务有限、资金限制、知识不足以及抗疟药物缺货。尽管社区卫生工作者采取了各种举措,但这些挑战依然存在,这强调了需要采取综合方法来解决系统性医疗保健差距并加强社区层面的教育,以提高治疗接受度并降低疟疾相关的发病率和死亡率。
引起疟疾的疟原虫通过传染性按蚊叮咬传播。有关寄生虫传播方式的详细信息,请参阅附录 A:疟疾生命周期。五种疟原虫可导致人类患病:恶性疟原虫、间日疟原虫、卵形疟原虫、三日疟原虫和诺氏疟原虫。由于疟疾在 20 世纪 50 年代初在美国被消灭,因此人们认为美国居民对疟疾没有免疫力,容易患上重病甚至死亡。在美国,每年约有 2,000 人被诊断出患有疟疾,其中大多数人是在存在持续蚊媒传播(输入性疟疾)的国家感染疟疾的。由于可传播疟疾的按蚊遍布大多数州,因此在美国境内,疟疾有可能从输入病例传播给非旅行者(但很少见)。
图 1。1)矢量容量图,总结了传播潜力(见方框 1),包括两部分:每人蚊子的出现率(λ);以及每只蚊子传播寄生虫的能力(f 2 q 2 e − gn /g 2。),其中 f 是血液进食率,q 是人类血液进食在所有血液进食中所占的比例,g 是瞬时死亡率 2)天气可能产生的一些影响;3)按影响传播的方式对参数进行排序。围绕蚊子水生生态(L)的方框,包括成虫产卵和羽化,表明疟疾传播的一个重要变异源,也受天气影响,而影响方式往往取决于当地情况。
在脊椎动物和蚊子的生命周期中,支持疟原虫疟原虫生存的一些细胞器适应性包括内质网、线粒体和顶质体。这种高度展开的内质网支持高蛋白质合成,从而促进寄生虫的快速生长和复制。线粒体在这种寄生虫中起着至关重要的作用,推动能量产生和调节新陈代谢。顶质体是来自红藻来源的次级共生的残留质体,对脂质合成、异戊二烯生产和脂肪酸延长至关重要。提供必需的、宿主无法获得的代谢物。对这些细胞器的研究可能会带来针对疟疾等疾病的新疗法,并有助于解决全球健康问题。
摘要肠道菌群已成为宿主免疫和健康的关键调节剂,越来越多的证据表明其在包括疟疾在内的传染病中的重要作用。本综述探讨了肠道微生物群和疟原虫感染之间的复杂相互作用,强调了微生物群落影响疟疾易感性,疾病进展和免疫反应的机制。讨论了对微生物群衍生的代谢产物的关键见解,其免疫调节作用以及它们干扰疟原虫生命周期的潜力。此外,基于微生物群的干预措施,例如益生菌,益生元和合成微生物组,被强调为预防疟疾和控制的有希望的策略。尽管有这些进展,但仍在将这些发现转化为实际解决方案,尤其是在资源有限的环境中。解决这些障碍需要跨学科的合作和创新方法。通过利用肠道微生物群,我们可以解锁抗击疟疾和推进全球健康计划的新途径。关键字:疟疾,疟原虫,肠道菌群,营养不良,益生菌和益生元
Adesola Z. Musa 3,Oluwagbemiga Aina 3,Emmanuel T. Idowu 2和 *Kolapo M. Oyebola 1,3 1生物医学基因组研究中心(Cegrib)基因组研究中心(Cegrib),基础和应用科学学院,山上高级大学,山顶大学,山上12号,Lagos-bibadan Expressway,Nierveway,Niger-bibos-top University。 2寄生虫学和生物信息学部门,尼日利亚拉各斯分校科学系动物学系。 3尼日利亚尼日利亚医学研究所,尼日利亚。 4尼日利亚拉各斯基础医学学院生物化学系基础医学系。 5个遗传学,基因组学和生物信息学系,国家生物技术研发局,尼日利亚阿布贾。Adesola Z. Musa 3,Oluwagbemiga Aina 3,Emmanuel T. Idowu 2和 *Kolapo M. Oyebola 1,3 1生物医学基因组研究中心(Cegrib)基因组研究中心(Cegrib),基础和应用科学学院,山上高级大学,山顶大学,山上12号,Lagos-bibadan Expressway,Nierveway,Niger-bibos-top University。2寄生虫学和生物信息学部门,尼日利亚拉各斯分校科学系动物学系。3尼日利亚尼日利亚医学研究所,尼日利亚。4尼日利亚拉各斯基础医学学院生物化学系基础医学系。5个遗传学,基因组学和生物信息学系,国家生物技术研发局,尼日利亚阿布贾。5个遗传学,基因组学和生物信息学系,国家生物技术研发局,尼日利亚阿布贾。