125 I-DCG04(图 3A)用于分析恶性疟原虫提取物中的半胱氨酸蛋白酶活性。标记的蛋白质通过质谱法鉴定,表明它们都属于木瓜蛋白酶家族的半胱氨酸蛋白酶,包括钙蛋白酶 1 和恶性疟原虫蛋白酶 1、2 和 3。深入分析使用相同的探针和高度同步的寄生虫种群,揭示了高度不同的恶性疟原虫活性谱,其中恶性疟原虫蛋白酶 2 和 3 的活性在滋养体阶段达到峰值,这与这些酶在血红蛋白降解中的作用一致。然而,恶性疟原虫蛋白酶 1 的活性在裂殖子阶段达到峰值。有趣的是,在这项研究中发现,恶性疟原虫蛋白酶 1 的活性谱与基于 mRNA 丰度水平预测的活性有显著不同。这一结果凸显了 ABPP 的主要优势之一,因为只标记给定酶的催化活性部分,而不管其蛋白质丰度或 mRNA 水平如何,从而可以更准确地测量细胞中的蛋白质动态。具有针对 125 I-DCG04 ABP 的肽基环氧物库的竞争性 ABPP 平台可产生对其他半胱氨酸蛋白酶具有超过 25 倍选择性的镰状细胞蛋白酶抑制剂。这种化合物导致新环状期寄生虫的百分比呈剂量依赖性下降,但不会阻止裂殖体发育和随后的破裂,这表明镰状细胞蛋白酶与血红蛋白降解或红细胞破裂无关,而是在非红细胞期寄生虫中具有特定作用。值得注意的是,这些应用并不依赖于任何专门针对这些酶的探针,而是依赖于针对半胱氨酸蛋白酶的一般反应性探针。 DCG04 探针已广泛用于标记选定的半胱氨酸蛋白酶家族。[15] 该探针基于广谱半胱氨酸蛋白酶抑制剂 E-64,这是一种含有环氧化物弹头的天然产物,已知具有抗疟活性。[16] 环氧化物是温和的亲电试剂,其反应性来自三元环张力。[10] 有趣的是,环氧化物抑制剂通常依赖于额外的基序(如肽骨架)来将分子引导至特定蛋白酶并促进目标酶的亲核攻击。正如在先前的研究中观察到的那样,针对特定酶家族筛选肽基环氧化物可以将这种看似混杂的弹头变成出乎意料的选择性小分子抑制剂和探针。[11,14]
AACVS 非洲疫苗安全咨询委员会 Anti-CS 抗环子孢子抗体 ACTs 青蒿素联合疗法 AE 不良事件 AEFI 免疫接种后不良事件 AESI 特别关注的不良事件 ATP 根据协议 AVPU 警报、声音、疼痛、无反应 CDC 疾病控制和预防中心 CHMI 受控人类疟疾感染 CRF 病例报告表 CSF 脑脊液 CSP 环子孢子蛋白 DALY 伤残调整生命年 DHS 人口与健康调查 DSMB 数据和安全监测委员会 DSS 人口监测系统 DTP 白喉、破伤风、百日咳 DTP3 第三剂 DTP 疫苗 EMA 欧洲药品管理局 EPI 扩大免疫规划 FIC 完全免疫的儿童 GACVS 全球疫苗安全咨询委员会 GCS 格拉斯哥昏迷量表 GDP 国内生产总值 GMT 几何平均滴度 GSK葛兰素史克 GTS 全球技术战略 HBHI 高负担到高影响 HepB 乙型肝炎 HHS 家庭调查 Hib 乙型流感嗜血杆菌 HIV 人类免疫缺陷病毒 HUS 卫生利用研究 ICER 增量成本效益比 IEC 信息、教育和交流 IPTi 婴儿疟疾间歇性预防治疗 IPTp 妊娠期疟疾间歇性预防治疗 IRS 室内滞留喷洒 ITN 杀虫剂处理蚊帐 JTEG 联合技术专家组 KEMRI 肯尼亚医学研究所 LLIN 长效杀虫蚊帐 LSHTM 伦敦卫生与热带医学院 LP 腰椎穿刺 MCV1 首剂含麻疹病毒的疫苗
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
当前的疫苗接种时间表包括三个主要剂量,将在9个月大之前服用,在大约2岁时进行第四剂。这涉及比目前在此年龄段推荐的三到四次疫苗接种访问。MVPE试图确定在三个全年疟疾传播的三个国家的高到中度疟疾发病率的地区引入疫苗时实现的影响。该程序将使用簇旋律的设计评估RTS的安全性,常规使用中的S/AS01,可行性,疫苗的可行性以及疫苗在人群水平上的影响。EPI计划在三个国家 /地区的每个国家 /地区的试验区域中以亚国疫苗引入疫苗。在每个国家的飞行员区域内,加纳地区(肯尼亚)和等效人口的群集(在马拉维)被随机分配,以在2019年(实施群集)引入疫苗,或者延迟引入直到最初的引入(比较杂物)(比较杂物)。因此,评估将使用群集随机设计。社区记者将记录5岁以下儿童在实施和比较集群中发生的所有死亡。在一部分集群中,正在哨兵医院建立医院监视,以监测患有疟疾和其他疾病的入院率。疫苗给药将通过每个国家/地区的免疫计划(EPI)进行,并通过群集样本家庭调查独立测量RT,S/AS01RTS,S/AS01RT,S。
个人的疫苗接种历史,健康状况,目的地,行程,旅行类型,住宿时间等。•如果这是文档的硬拷贝,请确保在此处查看此文档的最新版本。•任何问题,请通过dos-dhmosh-public-health@un.org与DHMOSH公共卫生联系
疟疾是一种寄生疾病,代表了全球公共卫生问题。质子属的原生动物负责引起人类疟疾。 疟原虫具有复杂的生命周期,需要翻译后的修饰(PTMS)在时间和空间上控制细胞活性,并调节关键蛋白质的水平和细胞机制,以维持效率高的感染和免疫逃避。 sumoylation是由小型泛素样蛋白与蛋白质底物上赖氨酸残基的共价连接形成的PTM。 该PTM是可逆的,是由三种酶的顺序作用触发的:E1激活,E2-共轭和E3连接酶。 在另一端,酵母中的泛素样蛋白特异性蛋白酶和哺乳动物中的哨兵特异性蛋白酶负责处理SUMO肽和对sumoypy的部分偶联。 进一步的研究对于理解疟原虫中SUMO的分子机制和细胞功能是必要的。 抗药性疟疾寄生虫的出现促使通过新颖的作用机理发现了新靶标和抗疟药。 在这种情况下,由疟疾寄生虫中的Sumoylation调节的保守生物学过程,例如基因表达调节,氧化应激反应,泛素化和蛋白酶体途径,建议PF SUMO作为一种新的潜在药物靶标。负责引起人类疟疾。疟原虫具有复杂的生命周期,需要翻译后的修饰(PTMS)在时间和空间上控制细胞活性,并调节关键蛋白质的水平和细胞机制,以维持效率高的感染和免疫逃避。sumoylation是由小型泛素样蛋白与蛋白质底物上赖氨酸残基的共价连接形成的PTM。该PTM是可逆的,是由三种酶的顺序作用触发的:E1激活,E2-共轭和E3连接酶。在另一端,酵母中的泛素样蛋白特异性蛋白酶和哺乳动物中的哨兵特异性蛋白酶负责处理SUMO肽和对sumoypy的部分偶联。进一步的研究对于理解疟原虫中SUMO的分子机制和细胞功能是必要的。抗药性疟疾寄生虫的出现促使通过新颖的作用机理发现了新靶标和抗疟药。在这种情况下,由疟疾寄生虫中的Sumoylation调节的保守生物学过程,例如基因表达调节,氧化应激反应,泛素化和蛋白酶体途径,建议PF SUMO作为一种新的潜在药物靶标。这种微型审查的重点是当前对疟原虫协调的多步生命周期作用机理的理解,并将它们作为寄生虫特异性抑制剂的发展和对疟疾疾病的治疗干预的有吸引力的新靶蛋白进行了讨论。
1应用疟疾研究与评估中心,公共卫生与热带医学院,杜兰大学,新奥尔良,美国路易斯安那州,美国路易斯安那州,2个社会和预防医学系,蒙特利尔公共卫生学院,蒙特利尔大学,蒙特利尔大学,Quebec,Quebec,Quebec,Quebec,Quebec,Canada,Center de Recherche Enstrique biolice and Montreal and Quebe and Montreal and Quebe and Qui Bioke,Quebe and Quebe and Quibe and Quibe and Quibe and Quibe and Canca,4 Tropical Medicine, London, United Kingdom, 5 Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA, 6 CDC Foundation, Atlanta, Georgia, USA, 7 IMA World Health, Port-au-Prince, Haiti, and 8 Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population,海地太子港1应用疟疾研究与评估中心,公共卫生与热带医学院,杜兰大学,新奥尔良,美国路易斯安那州,美国路易斯安那州,2个社会和预防医学系,蒙特利尔公共卫生学院,蒙特利尔大学,蒙特利尔大学,Quebec,Quebec,Quebec,Quebec,Quebec,Canada,Center de Recherche Enstrique biolice and Montreal and Quebe and Montreal and Quebe and Qui Bioke,Quebe and Quebe and Quibe and Quibe and Quibe and Quibe and Canca,4 Tropical Medicine, London, United Kingdom, 5 Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA, 6 CDC Foundation, Atlanta, Georgia, USA, 7 IMA World Health, Port-au-Prince, Haiti, and 8 Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population,海地太子港
摘要背景:明确的启动子是所有生物体遗传研究的基本要素,能够控制内源基因的表达、转基因表达和基因编辑。尽管如此,啮齿动物感染性疟原虫的明确启动子仍然很少。约氏疟原虫尤其如此,它常用于研究疟疾感染的蚊虫阶段和肝脏阶段,以及宿主对感染的免疫反应。方法:从寄生虫的整个生命周期中选择了六个启动子( clag-a 、 dynein heavy chain delta 、 lap4 、 trap 、 uis4 、 lisp2 ),文献中提到这些启动子以阶段特异性的方式控制其基因。还确定了赋予强表达水平的组成型 pybip 启动子的最小启动子长度,这对于报告基因和基因编辑酶的表达很有用。结果:相反,观察到这些启动子赋予了阶段富集基因控制,因为一些寄生虫也有效地在其他阶段使用这些启动子。因此,当单独使用这些启动子时,可能会使启动子交换、阶段靶向重组或基因编辑实验的结果解释复杂化。结论:这些数据表明,实现阶段特异性效应(例如基因编辑)可能最好使用双组分系统,其中独立的启动子活性仅在预期的生命周期阶段重叠。关键词:阶段富集启动子,基因编辑,约氏疟原虫,疟原虫
MVIP是由WHO建立的,以协调和支持非洲选定地区的RTS,S/AS01疟疾疫苗的分阶段引入。作为儿童疫苗接种计划的一部分,通过加纳,肯尼亚和马拉维卫生部的常规免疫服务向儿童提供疫苗。与疫苗引入分开,正在进行独立评估 - 家庭调查,哨兵医院和社区死亡率监视。这些观察性研究(试点评估)的数据将为如何最好地将疫苗引入常规系统的政策;疫苗对儿童生存的影响;并且,疫苗在常规使用方面的安全性。下面的时间表显示了该计划开发和实施的关键里程碑。