1. Achhammer, KH 和 Spang, D. 1998. 塑料瓶灌装。Brauwelt Int. 16:232-233。2. Back, W. 1981. 啤酒酿造月刊 34:267-275。3. Bamforth, CW 1983. 大麦中的超氧化物歧化酶。J. Inst. Brew. 89:420-423。4. Bamforth, CW、Muller, RE 和 Walker, MD 1993. 麦芽制造和酿造中的氧和氧自由基:综述。J. Am. Soc. Brew. Chem. 51:79-88。5. Bamforth, CW 和 Simpson, WJ 1995. 酿造中的离子平衡。Brew. Guardian 124(12):18-24。(注:仅当所有期刊都以第 1 页开头时才需要期刊号。)6. Hahn, AF、Banke, F.、Flossman, R.、Kain, J. 和 Koniger, J. 2001. 面向第三千年的过滤技术。Brew. Int. 1(8):49-50、52。7. Heggart, HM、Margaritis, A.、Pilkington, H.、Stewart, RJ、Dowhanick, TM 和 Russell, I. 1999. 影响酵母生存力和活力特征的因素:综述。Tech. Q. Master Brew. Assoc. Am. 36:383-406。8. Pollock, JRA 和 Weir, MJ 1975. 单个糖发酵过程中形成的辅助发酵和挥发性物质。Proc. Am. Soc.酿造化学34:70-75。
总结绿色革命是基于gibberellin(GA)激素系统的遗传修饰,其基因突变降低了GA信号,赋予了较短的身材,从而使植物适应现代农业条件。具有较短身材的强大GA相关突变体通常会降低鞘总序长度,因此由于干旱条件下的幼苗出现而产生的折现收益率增长。在这里,我们将Gibberellin(GA)3-氧化酶1(GA3OX1)作为大麦的替代半弱基因,它结合了植物高度的最佳降低,而无需限制了红细胞和幼苗的生长。使用大型大麦加入收集的大型领域试验,我们表明天然的Ga3ox1单倍型将植物高度适中降低5-10厘米。我们使用了CRISPR/CAS9技术,生成了几种新型GA3OX1突变体,并验证了GA3OX1的功能。我们表明,改变的GA3OX1活性改变了活性GA同工型的水平,因此,鞘总成长度平均增加了8.2 mm,这可以提供必不可少的适应性以在气候变化下保持产量。我们透露,CRISPR/CAS9诱导的GA3OX1突变将种子休眠增加到理想水平,这可能会使麦芽产业有益。我们得出的结论是,选择HVGA3OX1等位基因为开发具有最佳身材,更长的鞘翅目和其他农艺特征的大麦品种提供了新的机会。
摘要 绿色革命基于赤霉素 (GA) 激素系统的遗传改造,通过“矮化”基因突变降低 GA 信号,使植物矮化,从而使植物适应现代农业条件。矮化的强 GA 相关突变体往往胚芽鞘长度缩短,由于干旱条件下幼苗出苗效果不佳,导致产量降低。这里我们提出赤霉素 (GA) 3-氧化酶 1 (GA3ox1) 作为大麦的另一种半矮化基因,它既能最佳地降低植物高度,又不限制胚芽鞘和幼苗的生长。通过对大量大麦种质进行大规模田间试验,我们发现天然的 GA3ox1 单倍型可适度降低植物高度 5 – 10 厘米。我们使用 CRISPR/Cas9 技术,生成了几个新的 GA3ox1 突变体并验证了 GA3ox1 的功能。我们发现,改变 GA3ox1 活性会改变活性 GA 异构体的水平,从而使胚芽鞘长度平均增加 8.2 毫米,这可以为在气候变化下保持产量提供必要的适应性。我们发现 CRISPR/Cas9 诱导的 GA3ox1 突变将种子休眠期增加到理想水平,这可能有利于麦芽行业。我们得出结论,选择 HvGA3ox1 等位基因为开发具有最佳身高、更长胚芽鞘和额外农艺性状的大麦品种提供了新的机会。
亲爱的编辑,作物基因组编辑通过实现精英品种的精确改善,比常规育种具有巨大的优势。在谷物中,大麦(Hordeum vulgare L.)在全球重要性中处于第四位,并且在麦芽和酿造中具有广泛的应用。在像东亚这样的地区,大麦谷物具有传统的烹饪用途,直接煮熟为蒸大麦,烤成茶,或发酵用于味o和酱油,例如味道和酱油。值得注意的是,最近的健康趋势扩大了对年轻大麦草作为功能健康食品的兴趣。由于其富含维生素,纤维和类黄酮的含量,大麦草被加工成绿色果汁(Havlíková等人。2014)。这种绿色粉末表现出在抗毒剂,低脂肪和抗糖尿病活动中的有效性(Yu等人。2003;吉泽等。 2004; Takano等。 2013)。 在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。 为了打扮,精英品种培养了早期的标题特征。 但是,这些特征对年轻的大麦草产量产生负面影响。 具体来说,年轻峰值的出现降低了草的商业价值。 当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。 繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。2003;吉泽等。2004; Takano等。2013)。在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。为了打扮,精英品种培养了早期的标题特征。但是,这些特征对年轻的大麦草产量产生负面影响。具体来说,年轻峰值的出现降低了草的商业价值。当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。我们的vious作品引入了planta粒子轰击 - 核糖核蛋白
https://hort.ifas.ufl.edu/ 研究兴趣 我们的实验室致力于了解植物的特殊代谢,识别具有农业应用潜力和药用价值的化合物。我们的项目整合了生物化学、基因组学、基因发现和功能表征等多学科方法,以了解这些化合物生物合成的分子机制。我们还对使用基因编辑技术(包括 CRISPR/Cas9)进行有针对性的基因组修饰感兴趣,以改良农业作物和功能基因组学。 专业任命 助理教授(2020 年 1 月至今)研究 50%;教学 50% 美国佛罗里达大学 IFAS 环境园艺系 博士后研究助理 (2015 年 6 月 - 2019 年 12 月) 美国密歇根州立大学 (MSU) 植物土壤和微生物科学系 导师:David S. Douches 博士和 C. Robin Buell 博士 博士后研究助理,(2014 年 6 月 - 2015 年 5 月) 美国密歇根州立大学园艺系。 导师:Cornelius S. Barry 博士 研究助理,德国汉诺威莱布尼茨大学 (2007-2008) 导师:Ralf Uptmoor 博士 教育 博士学位 植物育种、遗传学和生物技术 (2009 年 1 月 - 2014 年 5 月) 美国密歇根州立大学 (MSU) 园艺系 论文:正向遗传学揭示新基因及其在番茄果实发育中的作用。导师:Cornelius S. Barry 博士 植物育种与遗传学硕士(最优等)(2005 – 2008)德国汉诺威莱布尼茨大学园艺生产系统研究所 论文:结合 AB-QTL 分析和生态生理模型来评估干旱胁迫对啤酒大麦叶片发育的影响。 导师:Ralf Uptmoor 博士和 Hartmut Stützel 博士 园艺学学士(金牌得主)(2001 – 2005)印度海得拉巴 Acharya NG Ranga 农业大学