摘要 木薯 (Manihot esculenta. Crantz) 是一种富含淀粉的木质块茎根作物,可作为重要的食物,尽管其潜力巨大,但很少有人研究它作为生物能源作物的潜力。这种作物发挥这种双重作用的主要瓶颈是其块茎在两种用途上的竞争。主要的木薯产区主要将块根用作食物,这导致它作为生物能源作物被忽视。使用非食用木薯部分作为纤维素生物燃料生产的原料是一种很有前途的策略,可以克服这一挑战。然而,在非块茎部分,大多数糖分都被木质素复合物高度隔离,使其无法被细菌生物转化。此外,由于多种生产限制,这些主要种植区的木薯产量并不理想。影响木薯作为食品和生物能源作物生产的挑战是相互关联的,因此需要一并解决。通过改良木薯以抵抗生物和非生物胁迫,可以提高产量,满足根部对食物和生物能源生产的高需求。此外,产量的提高将提高非食品部分用于生物能源的可用性,这是更大的目标。本综述讨论了通过改良木薯以抵抗降低其生产力的胁迫的努力,以及提高生物量生产的策略,这两者都对食物和生物能源都很重要。此外,还探讨了可以简化木薯生物转化以提高生物能源生产的潜在策略。
木薯 (Manihot esculenta Crantz) 据信在南美洲驯化了大约 8000 年,并于 16 世纪由商人带到了西非 [1]。木薯与包括产橡胶的 Manihot glaziovii 在内的 98 个其他物种一起,属于大戟科、木薯属 [2 – 5]。它是一种高度杂合的作物,以多倍体或二倍体的形式存在,后者有 36 条染色体 [6],在人类消费中位居水稻和玉米之后的第三位。此外,它还可用作动物饲料,并在商业上用于生产淀粉和可生物降解塑料。该作物通过茎插繁殖,每公顷的产量范围为 5000 – 20,000 个插穗,具体取决于品种的生长性质和种植系统 [7]。作为一种作物,木薯是最耐旱的作物之一,也能耐受营养贫乏和酸性土壤。木薯产量为 3.08 亿吨,种植面积为 2780 万公顷。尼日利亚是主要生产国之一,约占全球总产量的 20%,其他主要种植国包括安哥拉、巴西、中国、刚果民主共和国、加纳、印度尼西亚、菲律宾和莫桑比克、越南和泰国 [8]。木薯在海拔 1500 – 2000 米的热带地区广泛种植。木薯种植的温度范围为 25 – 29 ℃,
摘要:植物产生各种具有各种有益特性的天然化合物,包括抗氧化剂,抗酪氨酸酶,抗菌和细胞毒性活性。本研究旨在通过总酚含量和GC-MS分析研究植物化学物质,并评估Manihot Esculenta Crantz果皮的抗氧化和抗癌特性。由Folin-Ciocalteu方法确定的馏分A5和E5中的总酚含量非常高,值分别为395.77±0.65 mg GAE/g和617.21±0.62 mg GAE/g。In terms of antioxidant activity assessed by DPPH scavenging assay, fractions A3, A4, A5, E3, E5, E7 and E8 showed significant activity with IC 50 values of 385.83 ± 0.12, 507.87 ± 0.01, 504.69 ± 0.04, 537.56 ± 0.30, 534.04 ± 0.56,与标准的IC 50值分别为555.00±0.35 µg/ml,分别为552.78±0.58和508.26±0.33 µg/ml。此外,丙酮和乙醇提取物在MTT分析中针对肺癌细胞(H1792)显示出中度的细胞毒性,IC 50值分别为115.80±2.57 µ g/ml和111.33±2.25 µ g/ml。GC-MS分数A3和E8分别识别6和11个成分。级分A3的主要成分被鉴定为1,2-苯二羧酸dinonyl酯(50.59%),而级分E8主要由N-己二苯甲酸(17.45%)组成。这些结果表明,果皮M. esculenta crantz的剥离提取物和特定级分。富含酚类,表现出令人鼓舞的抗氧化活性,使其成为适合发展促进健康产品和医疗化妆品的候选者。
木薯(Manihot esculenta crantz)是一种粮食商品,仅次于大米和玉米,这三个是碳水化合物的主要来源,将来这种商品在人们的生活和国家的经济中将越来越战略性。木薯植物的生长不能与病原体引起的疾病分离,其中一种是一种真菌,如果它感染了植物,它将繁殖并扩散,以便植物受损。可以通过使用优质品种来完成生物疾病的控制,其中一种是通过施用水杨酸。这项研究的目的是分析DNA模式并确定与对照组相比,暴露于水杨酸的木薯植物的过氧化物酶活性。这项研究使用了一个完全随机的设计(CRD),其中一个因子,即水杨酸的浓度分为5级,即0 ppm,80 ppm,100 ppm,120 ppm,120 ppm和140 ppm,每个复制5。该研究数据以比较描述形式介绍,这些形式由照片和具有不同浓度的定量数据支持。研究结果表明(1)有一个新的(特异)DNA带,大小为1,100 bp(OPB_14),(2)在100 ppm的水杨酸浓度下,最高的过氧化物酶活性为0.193 U/mg/minne。
在使用饮用水源的地区,对清洁,安全的饮用水的需求不断增加,这仍然是一个挑战,因此囊泡水产品的扩散是为了增加。 不幸的是,一些袋鼠生产商未能遵守监管机构设定的标准,从而造成了毫无戒心的消费者的潜在健康风险。 因此,需要对这些水产品的各种参数进行批判性研究,以确定它们是否符合监管机构确定的安全标准。 三十(30)个不同品牌的小香水(15个NAFDAC注册和15个非NAFDAC注册)被随机收集(n = 3)(n = 3),来自尼日利亚卡诺市Gwale地方政府地区的生产商,以评估其物理化学化学和细菌学质量。 使用标准方法确定参数。 The mean results of the temperature, pH, turbidity, conductivity, chloride and total hardness of the NAFDAC registered samples were found to be in the range of 25.9-29.7 o C, 6.8-7.2, 0.1-1.2 NTU, 11.0-41.8µs/cm,15.0- 25.1 mg/L and 2.0-17.6 mg/L respectively, while for the non-NAFDAC registered样品的平均范围分别为25.8-30.8 O C,6.6-8.7,0.5-2.2 NTU,13.6-46.8 µS/cm,17.0 23.0mg/l和15.8-25.3 mg/l,分别为相同参数。 这些结果符合国家食品药物管理和控制机构(NAFDAC),尼日利亚工业标准(NIS)和世界卫生组织(WHO)设定的标准,除某些非NAFDAC注册样品中的pH值8.7以外,这些pH值比推荐的限制高一些。囊泡水产品的扩散是为了增加。不幸的是,一些袋鼠生产商未能遵守监管机构设定的标准,从而造成了毫无戒心的消费者的潜在健康风险。因此,需要对这些水产品的各种参数进行批判性研究,以确定它们是否符合监管机构确定的安全标准。三十(30)个不同品牌的小香水(15个NAFDAC注册和15个非NAFDAC注册)被随机收集(n = 3)(n = 3),来自尼日利亚卡诺市Gwale地方政府地区的生产商,以评估其物理化学化学和细菌学质量。使用标准方法确定参数。The mean results of the temperature, pH, turbidity, conductivity, chloride and total hardness of the NAFDAC registered samples were found to be in the range of 25.9-29.7 o C, 6.8-7.2, 0.1-1.2 NTU, 11.0-41.8µs/cm,15.0- 25.1 mg/L and 2.0-17.6 mg/L respectively, while for the non-NAFDAC registered样品的平均范围分别为25.8-30.8 O C,6.6-8.7,0.5-2.2 NTU,13.6-46.8 µS/cm,17.0 23.0mg/l和15.8-25.3 mg/l,分别为相同参数。这些结果符合国家食品药物管理和控制机构(NAFDAC),尼日利亚工业标准(NIS)和世界卫生组织(WHO)设定的标准,除某些非NAFDAC注册样品中的pH值8.7以外,这些pH值比推荐的限制高一些。发现一些非NAFDAC注册的样品中包含有氧人口细菌,尽管低于上述调节机构设定的极限。从统计上讲,NAFDAC注册的NAFDAC和非NAFDAC注册的样品之间存在显着差异(P> 2.326),但有氧粒细胞细菌计数中的样品没有显着差异,但是两组之间的大肠菌数术语没有显着差异(P <2.326)。这一发现突出了对定期微生物监测的必要性,以确保公共卫生的安全。
09/2019 第十六届茄科植物大会 产量与营养。耶路撒冷,以色列 海报 1:番茄中的杀虫黄酮工程 海报 2:SlAGL6 转录因子的分子表征 03/2017 系统发育分析研讨会:从基因库到系统发育树。马尼萨莱斯,卡尔达斯,哥伦比亚 12/2016 第一届国家农业基因组编辑课程。帕尔米拉,考卡山谷,哥伦比亚 06/2016 第九届 REDBIO 大会。 2016,秘鲁,利马 演讲:通过反式嫁接方法诱导木薯(Manihot esculenta)开花 海报:一种简单的水培强化系统和氮源对离体木薯(Manihot esculenta Crantz)驯化的影响 07/2015 研讨会:撰写科技文章。帕尔米拉,哥伦比亚考卡山谷省 10/2014 第九届拉丁美洲生物科学学生大会。亚美尼亚,哥伦比亚金迪奥省 演讲:使用 G3pdh、NIA-i3 和 matK 区域作为条形码识别来自 CIAT 种质库的木薯属(Mill)种质 09/2019 良好实验室规范(GLP)。CIAT,帕尔米拉,哥伦比亚考卡山谷省 08/2013亚美尼亚、金迪奥、哥伦比亚
- 通过未成熟叶片外植体的体细胞胚胎发生,为肯尼亚木薯 (Manihot esculenta) 开发一种可重复的体外再生方案 - 为农杆菌定向转化肯尼亚木薯基因型开发一种可重复的方案 - 利用 RNA 干扰生成无氰肯尼亚木薯 - 优化实验模型,以在实验室动物模型中诱导肥胖、痴呆、癫痫和焦虑 - 成功指导了 29 名硕士生和 15 名博士生 - 在同行评审的期刊上发表了 53 篇论文 - 参加了科学会议 - 获得了研究补助金 - 参与和合作开发肯雅塔大学法医学文凭和研究生文凭课程 - 在该部门实施文凭和研究生文凭课程
多年的工具和资源开发使一些模型植物-病原体系统的研究受益。但对于绝大多数具有经济和营养价值的植物来说,情况并非如此,从而造成了作物改良的瓶颈。由 Xanthomonas axonopodis pv. manihotis (Xam) 引起的木薯细菌性枯萎病 (CBB) 是所有种植木薯 (Manihot esculenta Crantz) 的地区的重要疾病。本文,我们描述了可用于可视化体内 CBB 感染的初始步骤之一的木薯的开发。利用 CRISPR 介导的同源定向修复 (HDR),我们生成了在 CBB 易感性 (S) 基因 MeSWEET10a 的 3' 端无疤痕插入 GFP 的植物。随后在转录和翻译水平上可视化了转录激活因子样 (TAL) 效应物 TAL20 对 MeSWEET10a-GFP 的激活。据我们所知,这是首次在木薯中通过基因编辑展示 HDR。
木薯(Manihot esculenta)是高于大米和玉米的热带碳水化合物食物的第三大来源。也称为Mandioca,Manioc,Yuca或Tapioca。这是许多热带和亚热带发展中国家,尤其是在西非的主要主食根作物。在90多个国家/地区成长,在全球范围内,它是人类饮食中第六个最重要的能源来源,并且是大米,糖和玉米/玉米之后的第四个能源供应商(Heuberger,Heuberger,2005年)。研究人员已经开发了几种木薯的加工方法,目的是降低其毒性,同时将高度易腐的根转换为可以被视为更稳定的产品的产品。发酵,阳光干燥,浸泡以及干燥或烘烤的过程已被报道为过程(Irtwange&Achimba,2009年)。两种不同类型的木薯是甜木薯(Manihot Dulcis)和苦木薯(Manihot esculenta)。苦木薯与高水平的氰化糖苷有关。甜木薯被认为没有太多的氰化物。在木薯的局部分类中,有些品种被视为“甜”(即无毒理)。这导致消费者对应用简单治疗的自满情绪,以在消耗块茎之前降低氰化物水平。因此,缺乏对氰化物中毒的潜在危险的认识,这是消耗生木薯块茎的原因(Cornelius,Robert,Gaymary,James&Sakurani,2019年)。在木薯中,主要的氰化糖苷是Linamarin。这是因为研究表明,在某些地区,尤其是在东非,甚至那些被认为是人类灾难的木薯品种也是如此(Mburu,Njue&Sauda,2011年)。因此,根据Osuntokun(1994)的长期消费少量氰化物会引起严重的健康问题,例如热带神经病。Alitubeera,Eyu,Benon,Alex&Bao-Ping(2019)报告说,2017年涉及乌干达98人的氰化物中毒爆发,其中发生了两起死亡案件。加工不足也会导致高氰化物的暴露,这会导致严重疾病(例如Jorgensen,Bak,Busk,Sorensen,Sorensen,Olsen,Puonti-Kaerlas&Moller,2005年)。这种抗营养素的存在通过木薯中的野马酶通过水解减少。已经采用了几种加工方法来降低木薯根的毒性,并同时将高度易腐的根转化为更稳定的产品。这些包括晒干,浸泡和发酵,然后干燥或烘烤(Irtwange&Achimba,2009)。传统育种者已经产生了具有低氰化物潜力的木薯品种,但它们并未成功提供完全没有氰化糖苷的木薯品种(Ngudi,Kuo&Lambien,2003)。也少量存在的是lotaustralin(甲基中胺)。也存在酶的Linamarase酶。Linamarin被Linamarase催化,将其迅速水解为葡萄糖和丙酮氰基羟化蛋白。它还将lotaustralin水解为相关的氰氢蛋白酶和葡萄糖。丙酮氰基氢蛋白在中性条件下分解为丙酮和氰化氢(食品标准澳大利亚新西兰,2005年)。在木薯被食用的一些热带国家中,很难分析木薯中氰化物的数量,因为执行测定程序所需的设施不容易获得,并且获得准确的分析方法是另一个困难领域。
对一些模型植物 - 病原系统的研究已从多年的工具和资源开发中受益。对于绝大多数经济和营养重要的植物而言,情况并非如此,从而产生了农作物改善的瓶颈。木薯细菌疫病(CBB),由xanthomonas axonopodis PV引起。manihotis(XAM)是木薯(Manihot esculenta crantz)种植的所有地区的重要疾病。在这里,我们描述了木薯的开发,可用于可视化体内CBB感染的初始步骤之一。使用CRISPR介导的同源指导修复(HDR),我们在CBB易感性的3'端(S)基因Mesweet10a生成了含有GFP的植物。随后在转录和翻译水平上可视化了转录激活剂(TAL)效应tal20的Mesweet10a-GFP。据我们所知,这是通过木薯中的基因编辑进行HDR的第一个证明。