4。函数和数组(7个讲座)功能的效用,按值调用,逐次调用,函数返回值,void函数,内联函数,返回数据类型,函数参数,函数参数,声明和函数的声明和定义之间的区分,司令部线路参数/参数在函数中,功能,功能,功能与可变量的参数数字。Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an Array, Accessing individual elements in an Array, Manipulating array elements using loops), Use Various types of arrays (integer, float and character arrays / Strings) Two-dimensional Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and Columns), Introduction to Multi-dimensional arrays, return语句,返回值及其类型,带有数组的字符串处理,字符串处理功能,递归
TABLE OF CONTENTS 8 FOREWORD 10 EXECUTIVE SUMMARY 12 INTRODUCTION TO THREATCASTING 16 KEY TERMS AND ESSENTIAL CONTEXT 18 FINDINGS 30 FINDING 1: ATTACKS ON HVIS 31 FINDING 2: SOWING DECEPTION AND DISINFORMATION AMONG VULNERABLE POPULATIONS 34 FINDING 3: ATTACKS ON THE FIGHTING FORCE 36 FINDING 4: ATTACKS ON HVIS IN THE BUSINESS AND FINANCIAL COMMUNITIES 38 OUTLIERS 40 OUTLIER 1: SIMULATED INFAMY AND THE LOSS OF REPUTATIONAL SOVEREIGNTY 40 OUTLIER 2: AI CREATES TANGIBLE NEW (UN)REALITIES 43 FLAGS 44 TECHNOLOGICAL PROGRESSION 45 THE THREE SIDES OF NEXT GENERATION SECURITY 46 DEGRADING ECONOMIC AND SOCIAL CONDITIONS LEAD TO VULNERABILITIES 48 EXPANSION OF NEW INFLUENCER TYPES 49 GATES 50 DEVELOP AN ADVANCED DIGITAL DEFENSE POSTURE 50 USE HUMAN RIGHTS AS A SECURITY MEASURE 54 EXPAND EDUCATION 54 SUMMARY 56 APPENDIX A – ENGINEERING CONSENT: AN EARLY 20TH CENTURY GUIDE TO MANIPULATING THE MASSES 58附录B - 主题专家访谈68附录C-参考书目“工程同意:20世纪初的群众指南” 94
NPS-23-N059-A 生成对抗网络 (GAN) 在预测和操纵移动网络控制系统对手行为中的应用 Jefferson Huang NSWC Crane
3.1 用于通用生产力的生成式人工智能 ...................................................................................................................... 11 3.1.1 会议 ...................................................................................................................................................... 11 3.1.2 总结文件 ................................................................................................................................................ 11 3.1.3 学习工具 ................................................................................................................................................ 12 3.1.4 起草内容 ................................................................................................................................................ 12 3.2 用于编码和软件开发的生成式人工智能 ............................................................................................................. 13 3.2.1 副驾驶工具 ............................................................................................................................................. 13 3.2.2 代码转换 ................................................................................................................................................ 13 3.2.3 构建精算模型 ................................................................................................................................ 14 3.3 模型文档和治理 ............................................................................................................................................. 14 3.4 丰富、操作和分析数据................................................................................................ 16 3.4.1 丰富数据 ...................................................................................................................................... 16 3.4.2 处理数据 ...................................................................................................................................... 17 3.4.3 数据分析 ...................................................................................................................................... 18 3.5 场景分析 ............................................................................................................................................. 19 3.6 自动化与效率 ...................................................................................................................................... 21 3.6.1 自动化 ............................................................................................................................................. 21 3.6.2 效率 ............................................................................................................................................. 21 3.7 索赔 ........................................................................................................................................................................ 22 3.8 承保................................................................................................................................................... 24
摘要 - 在基于学习的接触任务中,由于演示数据有限以及培训和部署条件之间的差距,仔细的力控制对于适应环境变化至关重要。这在擦拭任务中尤其重要,因为操纵柔软和可变形的物体(例如,海绵),在擦拭表面高度和海绵特性中,需要适应力的适应力。为了解决此问题,我们介绍了一种将实时触觉反馈与预训练的对象表示结合的方法,从而使机器人能够适应未看到的表面高度和对象属性。在实际硬件上进行了测试,该方法通过分析力轨迹,展示了适应性的显着进步,成功地适应了操纵环境的变化。索引术语 - 摄像模仿学习,基于力的接触 - 富含富含力的操纵,对象表示
在过去十年中,纳米科学和纳米技术已成为全球研究和开发的变革性领域。纳米级材料操控技术的发展从根本上改变了材料、设备和系统的设计和理解方式。纳米技术基于原子级材料和系统的使用,具体来说是纳米级(一纳米等于十亿分之一米)[1]。纳米催化就是其潜力的一个明显例子,通过操控反应中心的尺寸、成分和形态可以精确控制化学反应。该子领域对反应动力学、工业过程和能源应用产生了重大影响[2]。本综述旨在探索纳米粒子的潜力,特别是它们在催化中的应用。过渡金属纳米粒子在有机反应和先进的工业过程中表现出卓越的催化活性。了解这些材料可以显著提高能源效率和可持续性[3]