13 其他(1)如您通过邮件参与投标,则邮件必须在 2024 年 7 月 16 日星期二下午 4:00 之前到达承包官员,具体时间由发件人决定。此时,请将投标文件放入内信封,并在内信封上写明公司名称、投标日期和时间、投标主题,并用红墨水清楚地注明“随附投标文件”。如果您亲自携带文件,则必须在 2024 年 7 月 16 日星期二下午 5:00 之前提交。 (2)投标当日,上午9:50在会计部投标室开始投标。 (3)凡获得授权投标的人员,须在投标前提交授权委托书。 (4)在投标执行时间前提交竞争性资格审查结果通知书副本。 (5)在确定中标人时,中标金额为投标文件所载金额加上 10%(减税率项目为 8%)。因此,每个投标人,无论其是否须缴纳消费税,都必须在投标文件中载明相当于其估算金额 110/100 的金额(减税率项目为 108/100)。 (6)品目分类表(A)所列标准编号以粮食标准表中的标准编号为准。 (7)希望参加等效产品投标的人必须在 2024 年 7 月 10 日星期三下午 5:00 之前向第 373 会计中队承包小组提交等效性判定申请。 (8)样品提交:按照商品明细表进行。 (A)样品提交截止日期:2024年7月10日星期三,上午8:30至11:00。 (规定日期前或后提交的样品无效。) (9)计划订单数量应按照附件《品目分类表(A)》中的规定执行。不过这只是计划数量,具体确认数量还要通过下订单来决定。
动物中的胃肠道微生物组为操纵提供了一个有吸引力的目标,以改善动物健康和生产性能。更好地了解鸡肉肠道微生物组,以及如何使用营养干预措施来调节微生物群。大多数鸡肠道微生物组的研究都检查了肉鸡,很少有针对层微生物组的研究。这项研究的重点是研究补充曼南的富含分数(MRF)对峰值层次和峰值后层的盲肠微生物群的影响。在一项喂养试验中,在随机完整的块设计中,喂食奶酪女性的母鸡被喂食对照饮食或用MRF补充的对照饮食。cecal含量是从每次治疗的10个随机选择的鸟类中收集的,并在4个时间点进行元基因组分析(D 16、32、64和84 MRF引入)。alpha多样性分析表明,在D 16,D 32和D 64补充后,ChAO1显着较大,但与对照相比,MRF补充层的D 84在D 84时较低(P <0.005)。PCOA图表明,物种水平的细菌群落组成在每个时间点上对照和MRF补充层之间的较大差异(p <0.001)。微生物组分析表明,在补充MRF的84天之后,致病细菌单核细胞增生李斯特菌,弯曲杆菌的空肠,粪肠球菌和梭状芽胞杆菌的差异明显较低。肠道菌群的细菌多样性增加是对入侵病原体的定殖耐药性的关键决定因素之一。在这项研究中,我们观察到在育雏中补充MRF后的84天中,在84天中观察到了更大的α和β多样性,并较低的细菌病原体进行了检测。参考抗生素耐药性和粮食安全的全球挑战,通过使用天然非抗生素替代品来降低致病细菌种类,对于食物链完整性以及氟ock健康尤其重要。
联系信息:实验室董事:Farseem Mannan Mohammedy博士和MD Zunaid Baten博士电子邮件:farseem@eee.buet.ac.ac.bd and mdzunaid@eeee.buet.buet.ac.ac.bd
摘要:细胞外囊泡的分泌,EVS,是原核生物和真核细胞的常见过程,用于细胞间交流,生存和发病机理。先前的研究表明,来自细菌纯培养物的上清液中的EV存在,包括革兰氏阳性和革兰氏阴性的聚糖降解肠道分子。但是,复杂微生物群落分泌的电动汽车的隔离和表征尚未清楚地报告。在最近的一篇论文中,我们表明,木材衍生的复杂β -mannan与常规饮食纤维具有结构性相似,可用于调节猪肠道肠道菌群的组成和活性。在本文中,我们研究了24小时在复合β -Mannan富集后,猪粪便菌群分泌的EV的产生,大小,组成和蛋白质组。使用透射电子显微镜和纳米颗粒跟踪分析,我们以165 nm的平均大小识别电动汽车。我们利用猪蛋白的基于质谱的元蛋白质蛋白基于猪蛋白的数据库,并从猪群中鉴定出355个元基因组组装的基因组(MAG),从而鉴定出303蛋白。对于从β -mannan生长的培养物中分离出来的EV,大多数蛋白质映射到两个MAGS MAG53和MAG272,分别属于梭菌和细菌。此外,具有第三次蛋白质的MAG为MAG 343,属于肠杆菌阶。在β -Mannan EV蛋白质组中检测到的最丰富的蛋白质参与了翻译,能量产生,氨基酸和碳水化合物转运以及代谢。总体而言,这项概念验证研究表明,从复杂的微生物群落中释放出的电动汽车的成功隔离。此外,电动汽车的蛋白质含量反映了特定微生物对可用碳水化合物源的响应。
22. Khmaladze I、Kelkka T、Guerard S、Wing K、Pizzolla A、Saxena A 等。甘露聚糖在小鼠中诱发 ROS 调节的 IL-17A 依赖性银屑病关节炎样疾病。美国国家科学院院刊 [Internet]。2014 年 9 月 2 日 [2024 年 2 月 23 日引用];111(35)。可从以下网址获取:https://pnas.org/doi/full/10.1073/pnas.1405798111
m ma, yuan a013 Madzo, Jozef B022 Mamatjan, yin b008 manel, Nicolas B002 anaoncar, abhishek a012, a015 mannan, abdul b019 marchi, giovanf pr003, a0 Maurice, Madelon M. B003 Mazdo, Jozef B027 Mazzone, Amelia A012 mcullough, Kristen A015 Meek, ISSAC A009 MEI, Matthew A018 Miller, Julianna a004 mitrea, Emily Pr0 Hammed, Hisham B017 Moran, Michael B008 Morrissette, Jennifer A021 Mokath, Mariam A006 Motaksak, Eefthymiol a014
Jean Ching-Yi Tien, 1,2 Jie Luo, 1,2,14 Yu Chang, 1,2,14 Yuping Zhang, 1,2,14 Yunhui Cheng, 1,2,14 Xiaoju Wang, 1,2 Jianzhang Yang, 3,4 Rahul Mannan, 1,2 Somnath Mahapatra, 1,2 Palak Shah, 1,2 Xiao-Ming Wang, 1,2 Abigail J. Todd, 1,2 Sanjana Eyunni, 1,2 Caleb Cheng, 1 Ryan J. Rebernick, 1,2 Lanbo Xiao, 1,2 Yi Bao, 1,2 James Neiswender, 5 Rachel Brough, 5 Stephen J. Pettitt, 5 Xuhong Cao, 1,2 Stephanie J.), arul@med.umich.edu (A.M.C.)https://doi.org/10.1016/j.xcrm.2024.101758
微生物居住在反刍动物的胃肠道中,并通过维持肠道健康来调节身体代谢。胃肠道健康状态不仅受到最佳发育和生理结构完整性的宏观因素的影响,而且还受到微级别的肠道菌群和免疫状态之间的微妙平衡。在年轻反刍动物中突然断奶会导致肠道的不完整发展,导致不稳定且不形成的微生物群。突然的断奶还引起了肠道微生态稳态的损害,导致肠道感染和疾病,例如腹泻。最近,已经研究了营养和功能性酵母菌培养以解决这些问题。在此,我们总结了肠道微生物与年轻反刍动物体之间的当前已知相互作用,然后我们讨论了使用酵母培养作为饲料补充剂的调节作用。酵母培养物是一种微生态制剂,其中含有酵母,富含酵母代谢物和其他营养活性成分,包括β-葡聚糖,曼南,消化酶,氨基酸,矿物质,矿物质,维生素,以及其他未知的生长因子。它通过提供特殊的营养底物来支持肠功能,刺激肠粘膜上皮细胞的增殖和肠道微生物的繁殖。此外,β-葡聚糖和曼南人有效刺激肠道粘膜免疫,促进免疫反应,激活巨噬细胞并增加酸性磷酸酶水平,从而提高人体对几种疾病的抵抗力。将酵母培养物纳入年轻反刍动物的饮食中,大大减轻了对胃肠道压力的损害,这也起着有效的策略来促进肠道菌群的平衡,肠道组织的发展和粘膜免疫系统的建立。我们的评论为在年轻反刍动物的饮食中应用酵母菌培养提供了理论基础。
摘要人类真菌病原体的细胞壁作为建筑支架和宿主免疫反应的靶标和调节剂起着关键作用。尽管深入研究了病原酵母念珠菌的细胞壁,但其细胞壁中的主要原纤维成分之一是β-1,6-葡聚糖,已在很大程度上被忽略了。在这里,我们表明β-1,6-葡聚糖对于双层细胞壁组织,细胞壁完整性和丝状生长至关重要。首次表明β-1,6-葡聚糖的产生补偿了细胞壁外层曼南延伸的缺陷。此外,β-1,6-葡聚糖动力学还通过宿主环境刺激和壁重塑的应力协调,其中β-1,6-葡聚糖结构和链长的调节是一个至关重要的过程。我们指出,β-1,6-葡聚糖暴露在酵母表面并调节免疫反应时,必须将β-1,6-葡聚糖视为宿主 - 病原体相互作用的关键因素。