摘要 - 基于吸附的网络威胁继续发展,利用越来越复杂的加密技术来逃避检测并在受损的系统中持续存在。旨在分析结构加密特性的层次分类框架提供了一种新颖的方法,可将恶意加密与合法的加密操作区分开。通过系统地分解加密工作,分类方法会增强识别跨二经域威胁变体的不同模式的能力,从而降低了对经常不受快速突变威胁的预定签名的依赖。该研究研究了密码学特征映射如何促进分类精度的提高,突出了熵,钥匙交换机制和算法依赖性在区分有害加密活动中的作用。通过实验验证,该框架在多个攻击家族中表现出高度的精度,超过了调用分类技术,同时保持了适合大规模网络安全应用的计算效率。分层的结构分析进一步增强了法医调查,使安全分析师能够解剖加密工作流程,以追踪攻击起源并确定跨不同运动的共同点。该方法论加强了主动的威胁减轻工作,提供了可扩展且适应性的解决方案,该解决方案既是已知和新兴加密的网络威胁。比较评估说明了结构分解在减轻假阳性和负面因素方面的优势,从而增强了在实际安全环境中加密签名分类的可靠性。
摘要。这些研究利用了自组织映射 (SOM) 学习后输出的量化误差 (QE)。SOM 学习应用于具有可变白色和暗像素内容相对量的空间对比图像的时间序列,如单色医学图像或卫星图像。事实证明,学习后 SOM 输出的 QE 提供了图像随时间变化的潜在关键变化的可靠指标。当对比度强度保持不变时,QE 会随着图像空间对比度内容随时间的变化而线性增加。使用超快速 SOM 学习后,该指标能够捕捉大量图像时间序列中最小的变化,这一点迄今为止从未被怀疑过,这一点在计算机生成的图像、MRI 图像时间序列和卫星图像时间序列的 SOM 学习研究中得到了说明。对给定系列图像的拍摄时间的 QE 变化进行线性趋势分析,证明了该指标作为局部变化指标的统计可靠性。结果表明,QE 与记录测试图像系列的同一参考时间段内的重要临床、人口统计学和环境数据相关。研究结果表明,SOM 的 QE 易于实现,对于给定的 20 到 25 个图像系列,计算时间不超过几分钟,当目标是提供与图像间变化/无变化相关的即时统计决策时,它可用于快速分析整个图像数据系列。关键词。自组织映射 (SOM)、量化误差、图像时间序列、空间对比度、可变性、变化检测。
操作领域(AO)的情境情况对于指挥所和战术边缘的情况意识至关重要。运营商,例如一个营的S2或公司指挥官,从包括预期敌军的战斗(Orbat)的计划开始。他们会收到有关检测到的战斗空间对象(BSO)的持续信息,并将其添加到情境图片中。在理想情况下,操作员创建了一个真实,完整,最新和简洁的情况。实际上,图片可能不完整,包含错误或过时的信息。为了不断地保持准确的情境图片,重要的是要通过添加新的BSO来丰富它,也要管理可能重复或过时的BSO的更正和删除。在以前的论文中,我们介绍了两种方法,以自动聚集和富集情境图片:根据其空间距离随时间的空间距离[1],[2]和一种基于规则的方法,用于将BSO映射到敌人的Orbat [3] [3]。在本文中,我们提出了一种新的方法来维护情况,该方法确定了来自源自轨道的情境图片和簇的BSO群集之间的最佳映射。如[4]中所述,映射可以有效地充实情况形态图片,身份管理和改进的侦察计划。
a) 地块 A,DP 38981,67 Butler Street,拜伦湾,b) 地块 1,DP 38981,69 Butler Street,拜伦湾,c) 地块 2,DP 38981,71 Butler Street,拜伦湾,d) 地块 3,DP 38981,73 Butler Street,拜伦湾,e) 地块 4,DP 38981,75 Butler Street,拜伦湾,以及 f) 地块 5,DP 38981,77 Butler Street,拜伦湾。
虽然HDMAP是自动驾驶的关键组成部分,但获取和维护的昂贵。因此,从传感器中估算这些图的估算有望减轻成本。但是,这些估计值得超过现有的HDMAP,并使用当前的方法来确定低质量图或考虑已知地图的一般数据库。在本文中,我们建议在估计HDMAP时研究的确切情况的现有地图。为了证明这一点,我们确定了3种有用的现有地图(极简主义,嘈杂和过时的)类型。然后,我们介绍了Mapex,这是一个新颖的在线HDMAP估计框架,可说明现有地图。Mapex通过将地图元素编码为查询令牌来实现这一目标,并完善用于训练基于经典查询的MAP估计模型的匹配算法。我们证明Mapex在Nuscenes数据集上带来了重大改进。例如,Mapex-给定嘈杂的地图 - 比MAPTRV2检测器提高了38%,其基于当前SOTA的基础为8%。
在当地教育机构,劳动力发展计划与行业领导者之间进行了强有力的合作,该地区培养了一个熟练且适应能力的人才库,准备支持医疗保健,技术,酒店和先进制造等领域的增长。