为什么要海洋能量?海洋提供地球上最大的未开发能源之一。潮汐,河流,海洋电流和波浪功率以及温度和盐度的差异可用于产生能量。近年来,全球人口和社会经济增长的增长正在推动全球能源需求的增加。化石燃料满足了大部分需求,这有助于温室气体排放和气候变化。海洋可再生能源资源可以是满足世界能源需求的解决方案之一。这些资源利用了我们海洋的巨大潜力,提供了各种可再生能源。通过潮汐,波浪和海洋热能转化产生的能量(OTEC)是重要的,并且在追求国家的可持续和脱碳能源方面是很大程度上无法探索的可再生能源。
This Special Issue highlights new advances in ecological modelling methodologies that provide improved insights into the mapping of marine mammal habitats, crucial to the protection and recovery of vulnerable marine mammal species and populations and essential for identifying future priority conservation areas, such as Ecologically and Biologically Significant Areas (EBSAs), Key Biodiversity Areas (KBAs), and Important Marine Mammal Areas (IMMAs).这些进步涉及迫切需要确切的栖息地识别来增强保护工作,确保海洋哺乳动物人群的保护和可持续性,同时增强了沿海和高海上环境中海洋保护区(MPA)的识别和管理。通过提高我们对海洋哺乳动物分布及其生态要求的理解,这项研究在为政策决策和指导有效的管理策略提供信息方面起着关键作用,最终为全球海洋生物多样性保护目标做出了贡献。
美国加利福尼亚州旧金山,美国加利福尼亚州旧金山,全国生物物理协会年度会议,2014年戈登研究会议,质子和膜反应,美国加利福尼亚州文图拉,2014年,2014年邀请研讨会,美国国家卫生研究院,美国国家卫生研究院,巴尔的摩,美国马里兰州,美国医学博士,2014年雪人夏季生物生物系统,烟囱,2014年,美国,雪地,2014年,雪诺,2014年,雪诺,2014年,美国雪诺,2014年,雪诺,2014年。美国刘易斯顿,美国,2015年落基山大会:EPR研讨会,美国科罗拉多州丹佛市,2019年NAMD开发人员研讨会(Virtual),伊利诺伊大学,美国伊利诺伊州乌尔巴纳尚eark urbana,美国伊利诺伊州,美国伊利诺伊州,2021年,2021年生物物理学会生物物理学,美国马里兰州巴尔蒂马尔大学,巴尔蒂马尔大学,美国米兰,2023年美国威斯康星州密尔沃基,美国威斯康星州,2023年,邀请研讨会(虚拟),维多利人血液研究所,美国威斯康星州密尔沃基,美国,2023年,
要通过分子方法研究海洋环境中的微生物群落,重要的是要以足够的量和纯度提取DNA。样品中抑制剂的存在可能导致虚假的阴性结果或信息丢失,但可以通过实验中的过程控制来突出显示。我们比较了海洋样品上的七种细菌DNA提取方法:鱼皮,g和胆量,软体动物肉,浮游植物和浮游动物。在一半的样品中添加了一个过程控制(单核细胞增生李斯特菌)。比较了DNA提取方法的性能,以产生针对细菌TUF基因和过程控制Hlya基因的QPCR扩增的更纯和浓缩的DNA。通过分光光度法测定测定DNA的纯度和浓度。结果表明,使用PowerBiofilm和Purelink微生物组试剂盒获得了最高纯度和浓度DNA。QPCR数据证实了这些试剂盒以更高的扩增效率产生了更好的细菌DNA纯度和浓度。在某些样品中,通过靶向Hlya基因的QPCR检测到抑制剂的存在,表明样品是被抑制剂污染的异质性。DNA提取物适用于海洋环境中的遗传下游应用。
摘要。Dansgaard – Oeschger(D – O)事件,千禧一代的气候气候振荡(在高北纬度地区的幅度高达10–15℃)之间发生在整个海洋同位素阶段3(MIS3; 27.8-59.4 KA)期间。到目前为止,气候建模统一无法回答我们的气候模型是否太稳定而无法类似D – O事件的问题。为了解决这个问题,本文为一般循环模型的MIS3 D – O协议奠定了基础,该协议在国际气候变化小组(IPCC)评估中使用。我们回顾以下内容:D – O术语,在这些IPCC级模型(过程和已发布的例子)中模拟D – O事件的社区进展以及有关发生D – O事件的边界条件的证据。我们发现,没有模型在前工业条件下表现出D – O样行为。一些但不是全部,模型在MIS3和/或完整冰川条件下表现出D – O样振荡。温室气体和冰盖配置至关重要。但是,大多数模型没有运行足够长的持续时间的模拟,以确保在MIS3或完整冰川状态下哪些模型显示出D – O样行为。我们提出了34 ka的MIS3基线协议,该方案具有低倾斜值,中度至低的MIS3温室气值以及中间的冰盖构造,我们的评论表明,这最有利于模型中的D – O样行为。本综述提供了使用共同框架调查MIS3 D – O振荡的建模组,该框架的目的是(1)最大化我们还为第二次淡水(海因里希事实至关重要的)实验提供了原始的Col,因为以前的工作表明,这种变体可能有助于在模型中预处理一个状态,这有利于D – O事件。
大规模:eDNA 采样适用于地理上相距遥远的大面积区域,是监测广阔海洋环境的理想选择。强大的技术:与传统的生物监测方法相比,eDNA 灵敏度高,可快速提供结果。可持续性:这是一种非侵入性方法,可减少监测过程对环境的影响。成本效益高且用途广泛:该方法相对便宜,能够检测稀有、短暂或入侵物种,例如伯利兹的入侵狮子鱼。
团队负责人的淡水和海洋科学将领导五名科学家组成的团队,专门研究淡水和海洋生态系统,包括水质科学,水生生态学和生态系统健康。该角色的关键功能是积极地领导团队:为他们提供支持,教练和其他专业发展机会,以确保他们的工作努力能够达到高效和有效的服务提供。尽管技术分析和报告并不是该角色的关键功能,为了成功地领导高度专业的技术专家团队,但团队负责人的淡水和海洋科学需要彻底了解科学方法,以及进行复杂的数据分析的经验以及对技术和非专家的报道结果的经验。
除了对海洋碳循环和食物网至关重要之外,海洋微藻目前还被用于不同的用途,包括功能性食品。这些光合微生物产生高质量的蛋白质、脂质和碳水化合物,是人类营养丰富的食物来源。例如,它们的蛋白质和脂质含有我们饮食中必需的氨基酸和多不饱和脂肪酸 (omega-3)。就碳水化合物而言,据报道它们具有抗病毒和抗炎特性。意识到这些营养特性后,科学家们专注于开发功能性食品和技术。因此,本期特刊旨在为微藻功能性食品的开发和评估做出贡献。我们向不同领域的研究人员发出邀请,包括但不限于新菌株的培养和营养成分、生物质和细胞外分子的分离和纯化以及食品的配方和特性。
所谓共享经济的出现引起了人们的好奇心,并在过去几年中引发了争论。共享经济(SE)是一个广泛的概念,缺乏明确和普遍认可的含义。无论定义如何,SE 的一个共同特征是有效利用未充分利用的资产以获取经济收益(Munkøe,2017),允许人们借助信息技术与他人交换未充分利用的资产(Petropoulos,2017)。人们对临时使用而不是永久拥有表现出积极的态度。SE 不仅提高了消费效率,而且还有助于提高生产效率、减少浪费、降低成本以及发展更人性化的社会(Brkljac 和 Sudarevic,2018;Relich 2016)。主要是两个共享经济平台 Airbnb 和 Uber 的成功引发了其他行业对 SE 概念的兴趣激增。许多企业,特别是运输业和住宿业,都从共享经济中受益 (Brkljac and Sudarevic, 2018)。由于采用此类模式的复杂性,制造业在 SE 概念方面开发最少。随着制造业采用 SE 实践,制造商可以通过互联网平台向缺乏资源的组织有偿分享其未使用的资源,如多余的原材料、设备、技能等。此外,拥有过剩生产订单的制造商可以与其他共享经济用户分享订单,以满足需求和时间。SE 似乎是一个简单的概念,但通过纳入 SE 从传统方法转变并不容易,在某些情况下,它可能会失败。因此,分析