通过智能设备和远程指导,我们可以使糖尿病教育比当前的护理过程更有效和成本效益吗?这是我们2023年临床研究的关键问题。通过这项研究,我们检查了新的混合护理路径:1。与常规护理路径相比,有效地改善了患者的健康状况。通过测量血值(HBA1C和胆固醇),体重,腹膜和BMI。2。患者和员工通过验证问卷进行定性调查,更喜欢当前护理过程的混合护理路径。3。通过Markov模型中Qaly和Iker的计算,可以通过现有资源来实现这种新的混合护理路径。
我们研究了具有已知动态但未知奖励功能的平均奖励和交流马尔可夫决策过程(MDP)中的遗憾最小化。尽管在此类MDP中学习比完全未知的MDP更容易,但它们仍然在很大程度上是挑战,因为它们包括特殊情况,例如组合半伴侣等大类问题。以统计上有效的方式利用遗憾最小化的过渡功能的知识似乎在很大程度上没有探索。猜想,即使有已知的过渡,我们即使在通用MDP中实现精确的最佳性也是NP-HARD,因此我们专注于计算有效的放松,以实现Order-Timpimal-Timal-Topimal-Mic MIC的遗憾而不是精确的最佳性。我们通过基于流行的匪徒最小经验差异策略引入一种新颖的算法来填补这一空白。提出的算法的关键组成部分是一个经过精心设计的停止标准,利用固定策略引起的复发类别。我们得出了一种非渐近,问题依赖性和对数的遗憾,该算法依赖于利用该结构的新颖遗憾分解。我们进一步提供了有效的实施和实验,以说明其有希望的经验绩效。关键字:平均奖励马尔可夫决策过程,遗憾的最小化,对数遗憾,马尔可夫链,经常性课程
简介:基本概念。监督的学习设置:至少是平方,逻辑回归,感知器,指数家庭,生成学习算法,高斯判别分析,幼稚的贝叶斯,支持向量机器,模型选择和功能选择。学习理论:偏见/差异权衡,工会和切尔诺夫/hoeffding界限,风险投资维度,最坏情况(在线)学习。无监督的学习:聚类,k-均值,期望最大化,高斯人的混合物,因子分析,主成分分析,独立组件分析。强化学习和控制:马尔可夫决策过程,钟声方程,价值迭代和政策迭代,Q学习,价值函数近似,策略搜索,加强,部分可观察到的马尔可夫决策问题。
。课程大纲:机器学习介绍;概念学习:假设的一般顺序,版本空间算法,候选算法;监督学习:决策树,天真的贝叶斯,人工神经网络,支持向量机,过度拟合,嘈杂的数据和修剪,测量分类器的精度;线性和逻辑回归;无监督的学习:分层的伙伴聚类。k-means分区聚类;自组织地图(SOM)k-neart-neigh-neigh Neignal算法;使用标记和无效数据使用EM进行半监督学习;强化学习:隐藏的马尔可夫模型,蒙特卡洛推理探索与剥削权衡取舍,马尔可夫决策过程;合奏学习:使用多个假设的委员会。包装,提升。参考材料:
美国爱达荷州伯克利国家实验室的能源与环境科学技术局。美国爱达荷州伯克利国家实验室的能源与环境科学技术局。美国爱达荷州伯克利国家实验室的能源与环境科学技术局。
路径积分量子蒙特卡洛(PIMC)是一种通过使用马尔可夫链蒙特卡洛(Monte Carlo)从经典的吉布斯分布中抽样的量子量子自旋系统的热平衡性能的方法。PIMC方法已被广泛用于研究材料物理和模拟量子退火,但是这些成功的应用很少伴随着正式的证据,即PIMC依据的马尔可夫链迅速汇聚到所需的平衡分布。在这项工作中,我们分析了1D stoquastic hamiltonians的PIMC的混合时间,包括远程代数衰减相互作用以及无序的XY旋转链,以及与最近的静脉相互作用。通过将收敛时间与平衡分布联系起来,我们严格地证明使用PIMC在近似温度下对这些模型的可观察到的分区函数和期望为近相数,这些模型与Qubits的数量最大程度地对数扩展。混合时间分析基于应用于单位大都会马尔可夫链的规范路径方法,用于与与量子汉密尔顿量子相互作用相关的2D经典自旋模量的吉布斯分布。由于系统具有强烈的非偶然耦合,随着系统大小而生长,因此它不会属于已知2D经典自旋模型迅速混合的已知情况。
量子游走算法原则上是一种主要用于在图中搜索标记顶点的搜索算法。量子游走的灵感来自经典马尔可夫链(经典随机游走),但量子游走中没有任何随机性。与经典算法相比,量子游走算法利用叠加能力在计算上实现了二次加速。在这个项目中,我们将简要介绍经典马尔可夫链,以类比量子游走,然后介绍硬币空间和硬币运算符的概念,它们决定了游走者的每一步。之后,我们将研究该算法的数学公式,并在 4 维超立方体上实现它。算法的电路因情况而异,在这个项目中,我们将实现它来搜索超立方体上的标记索引。
1主要结果的简介和陈述。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>486 1.1随机匹配问题及其亚正索。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>486 1.2线性化和scap。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>489 1.3主要结果的公式。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。489 1.4扩展到一类次边缘的马尔可夫链。。。。。。。。。。。。。。。493 1.5开放问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。495 2证明的结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。498 3证明。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。502 3.1表示法和初步结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。502 3.2 L Q型估计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。505 3.3波动估计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。512 3.4合同性估计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。519 3.5定理1.2证明:运输计划的近似值。。。。。。。。。。。。。。。。。。525附录A:概率和PDE工具。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。533附录B:点云的匹配成本。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。534附录C.马尔可夫连锁店的证明。。。。。。。。。。。。。。。。。。。。。。。。。。。536参考。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。539
从高维凸体中生成随机样品是无数连接和应用的基本算法问题。[DFK91]的著名结果的核心是用于计算凸体体积的随机多项式算法,是第一个用于均匀采样凸体的多项式时间算法。在此后的几十年中,对抽样的研究已导致其算法复杂性的一系列改进[LS90,LS93,KLS97,LV06,CV18],通常基于发现的新数学/几何结构,建立了与其他领域的连接(例如,均具有新的工具),并开发了新的工具(例如并分析马尔可夫连锁店。随着数据的扩散和机器学习的越来越重要,取样也已成为一种必不可少的算法工具,应用采样器需要非常高的尺寸的采样器,例如科学计算[CV16,HCT + 17,KLSV22] Sta20]。凸体的采样器基于马尔可夫链(有关摘要,请参见§A)。他们的分析是基于关联的马尔可夫链的电导限制,后者又界定了混合速率。分析电导需要将精致的几何参数与(Cheeger)凸体的(Cheeger)等级不平等相结合。后者的原型示例如下:对于任何可测量的分区S 1,s 2,s 3的凸形身体k r d,我们有
