随着最近发布的高质量参考基因组组装,普通狨猴(Callithrix jacchus)已成为生物医学研究中一种有价值的非人灵长类动物模型。两个亚洲灵长类动物研究中心均独立报道了患有癫痫的狨猴。尽管如此,这些灵长类动物中心的群体遗传学和与狨猴癫痫相关的特定遗传变异尚未阐明。在这里,我们利用全基因组测序技术,对来自两个癫痫狨猴谱系的 41 个样本的遗传关系和癫痫风险变异进行了表征。我们从 41 个样本中鉴定了 14 558 184 个单核苷酸多态性(SNP),发现血液样本中的嵌合水平高于指甲样本。基因分析显示,灵长类动物中心的狨猴之间存在四度亲缘关系。此外,SNP 和拷贝数变异 (CNV) 分析表明,含 WW 结构域的氧化还原酶 ( WWOX ) 和酪氨酸蛋白磷酸酶非受体 21 型 ( PTPN21 ) 基因可能与狨猴癫痫有关。值得注意的是,
麦克风控制器。由于眼睛照明和环境照明在43个自然背景下不断变化,因此我们开发了一个分割的人工神经网络,以在这些条件下执行强大的学生44跟踪。利用这种创新的系统来研究主动视觉,我们45证明,尽管自由移动的摩尔群落表现出频繁的补偿性眼睛46个运动,等于其他灵长类动物,包括人类,但视觉47行为的可预测性(凝视)在动物相对于头部固定时相对自由地移动时的自由移动时,较高。48此外,尽管在运动过程中的眼睛/头部动作增加,但由于运动期间的VOR增益增加,凝视稳定仍然稳定49。这些结果证明了50个有效的,动态的视觉运动机制和相关行为,这些机制在灵长类动物探索52自然世界时,可以使稳定,高51个分辨率的脉动分辨率。53
抽象的思想理论(汤姆)是指将精神状态归因于其他人的认知能力。这种功能甚至扩展到精神状态的归因于具有简单几何形状的动画,例如Frith-Happé动画,其中两个三角形无目的地移动(随机条件)(随机条件),表现出纯粹的身体运动(目标为导向的条件),或者像一个三角形在一个三角形对其他三角形的心理状态(tom tom的状态)一样移动。尽管已经完全确立了人类的这种能力,但对非人类灵长类动物的研究产生了不一致的结果。这项研究探讨了一种高度社交的灵长类动物Marmosets(Callithrix Jacchus)如何通过研究凝视模式和脑部激活Marmosets和人类观察到这些动画的方式来处理Frith-Happé动画。我们透露,与其他条件相比,在TOM动画中的三角形上,Marmosets和人类都表现出更长的固定性。但是,我们没有观察到与人类在Marmosets中的TOM动画上更长的整体固定持续时间相同的模式。此外,我们的发现表明,在观看汤姆与随机动画时,两种物种都激活了广泛和可比的大脑网络,这表明摩尔摩人在与人类类似的情况下区分了这些情况。虽然马尔莫斯人没有模仿人类的整体固定模式,但它们的凝视行为和神经激活表明汤姆和非TOM场景之间有区别。这项研究扩展了我们对非人类灵长类动物认知能力的理解,阐明了Marmoset和人类之间的TOM处理的潜在相似性和差异。
对于成年果mo虫,请确保没有可检测到的AAV9中和抗体。这可以由宾夕法尼亚大学的Penn Vector Core(https://gtp.med.upenn.edu/intranethome/core-facilities-internalle/immunology)
图2 Marmo-Ad联盟的概述。Marmo-AD将利用AD数据宇宙为基因工程的新风险变体提供信息,以介绍摩尔莫斯群岛的基因工程以及临床数据的对准(遗传学,多态,成像,生物标志物,行为措施,认知评估,认知评估)和Model-AD的小鼠模型数据。项目由技术核心执行的实验支持。动物模型将在GEC,床上生成并保持在VCMC中,并在MDCC中进行表征。BDIC将合并来自AD知识门户的数据,优先考虑模型生成的变体,并支持计算和生物统计分析。最后,管理员核心将确保将数据产生,协议,组织和模型提供给研究社区。AD,阿尔茨海默氏病;管理员,行政; BDIC,生物信息学和数据集成核心; GEC,基因工程核心; Marmo-Ad,摩尔莫斯人作为AD的研究模型; MDCC,多模式疾病表征核心; VCMC,兽医和殖民地管理核心; AMP-AD,为阿尔茨海默氏病提供了药物合作伙伴关系计划;阿德尼(Adni),阿尔茨海默氏病神经影像倡议; ADSP,阿尔茨海默氏病测序项目;治疗,靶向促成阿尔茨海默氏病的疗法发展; AD模型,模型生物体开发,以评估晚期阿尔茨海默氏病; ai4ad;阿尔茨海默氏病的人工智能; IGAP:阿尔茨海默氏症项目的国际基因组学,ROS/地图:宗教秩序研究/记忆与老化项目; ADGC:阿尔茨海默氏病遗传学伴侣。AD,阿尔茨海默氏病;管理员,行政; BDIC,生物信息学和数据集成核心; GEC,基因工程核心; Marmo-Ad,摩尔莫斯人作为AD的研究模型; MDCC,多模式疾病表征核心; VCMC,兽医和殖民地管理核心; AMP-AD,为阿尔茨海默氏病提供了药物合作伙伴关系计划;阿德尼(Adni),阿尔茨海默氏病神经影像倡议; ADSP,阿尔茨海默氏病测序项目;治疗,靶向促成阿尔茨海默氏病的疗法发展; AD模型,模型生物体开发,以评估晚期阿尔茨海默氏病; ai4ad;阿尔茨海默氏病的人工智能; IGAP:阿尔茨海默氏症项目的国际基因组学,ROS/地图:宗教秩序研究/记忆与老化项目; ADGC:阿尔茨海默氏病遗传学伴侣。
有越来越多的研究项目,其目的是模拟大脑区域甚至完整的大脑,以更好地了解其工作方式。让我们引用:例如:欧洲的人类脑项目(1),通过疾病研究的综合神经技术(脑/思想)(7)或统一国家的大脑倡议(25)进行大脑映射。几种方法是可行的。有生化方法(34),它注定要像大脑一样复杂。已经研究了一种更具生物物理的方法,例如,请参见(14),其中皮质桶已成功地进行了相似,但仅限于约10个5个神经元。,人脑含有大约10个11个神经元,而像marmosets(7)这样的小猴子有6×10 8神经元(22)和一个较大的猴子,例如
在一项药代动力学研究中,非人类灵长类动物的两项实验室研究,有25种成年普通摩尔果会接受单个平方剂量的丁丙诺啡SR(0.15 mg/kg,n = 8)或ethiqa Xr(0.1 mg/kg,n = 6,n = 6,0.15 mg/kg,n = 6,0.15 mg/kg,n = 3,和0.2 mg/kg/kg/kg/kg/kg,根据红斑和肿胀的总检查对注射部位反应进行评分。在所有组的剂量后8小时和24小时内都注意到轻度镇静。体重相对于基线的体重在所有组的基线均减少,除了ethiqa XR 0.15 mg/kg;但是,这些减少在临床上并不显着(<占体重的10%)。对任何一种配方的注射div>粉末载导致剂量依赖性的笼子运动增加。丁丙诺啡SR和埃塞卡XR急性注射部位均表现出急性坏死和炎症。慢性两种药物的炎症程度总体相似。但是,在质上有所不同。Burprenorphine SR注射部位主要与巨噬细胞和中性粒细胞相关,而埃塞克XR位点与巨噬细胞和多核巨细胞和胆固醇裂解有关,响应于车辆培养基。6
理解和映射人类连接是神经科学的长期努力,但是在冷冻调查过程中,与人脑大脑的大尺寸相关的显着挑战尚未解决。虽然较小的大脑(例如啮齿动物和果果会)一直是以前连接项目的重点,但较大的人脑的处理需要显着的技术进步。这项研究解决了在对齐的神经解剖坐标中冻结大脑的问题,其组织损伤最小,从而促进了大规模无变形的冷冻效果。我们报告了最有效,最稳定的冰点技术,该技术利用了适当的冷冻保护和利用工程工具(例如大脑主图案,定制设计的模具以及连续的温度监测系统)的适当选择。这种冻结的标准化方法可实现高质量的无失真组织学,使全世界的研究人员能够在细胞水平上探索人脑的复杂性。我们的方法结合了神经科学和工程技术,可以通过有限的资源来应对这一长期存在的挑战,增强了大型科学努力以外的发达国家的努力,促进了多种方法,并促进了合作。
处理。t这里有越来越庞大的研究项目,其1个目标是模拟大脑区域甚至完整的大脑2,以更好地了解其工作方式。让我们引用3个立场:欧洲的人脑项目(1),大脑4通过疾病研究的综合神经技术映射5(大脑/思想)在日本或大脑倡议(3)中,在6个联合国家中。几种方法是可行的。有7种生化方法(4),它注定了与大脑一样复杂的系统8。已经研究了一种更具生物物理的方法,例如,请参见(5),其中已成功模拟了皮质桶10,但仅限于10 5 11个神经元。然而,人脑含有约10 11个neu-12 rons,而像marmosets(2)这样的小猴子已经具有13 6×10 8神经元(6),而更大的猴子(如猕猴)具有14 6×10 9神经元(6)。15为了模拟如此庞大的网络,减少模型可以制作16个。特别是,神经元没有更多的物理形状,并且仅由具有18个特定电压的网络中的一个点表示。Hodgkin-Huxley方程(7),可以重现物理形状,代表了离子通道的动态,21,但这些耦合方程的复杂性形成了22个混乱的系统(8),使系统非常前端,使该系统非常前端,以模拟23个巨大的网络23。如果忽略了离子通道动态,则24个最简单的电压模型是集成与火的模型(9)。25使用此类模型,超级计算机26可以模拟人尺度的小脑网络,该网络达到约27 68×10 9神经元(10)。28然而,还有另一种观点,这可能使29我们可以使用简化的模型模拟此类大型网络。30的确,人们可以使用更多随机模型来重现31神经元的基本动力学:它们的插图模式。32不仅连接图的随机化,而且33图表上的动力学使模型更接近手头的34个数据,并在一定程度上解释其可变性。35随机的引入不是新的,并且在包括Hodgkin-Huxley(11)和泄漏37
1个部门神经科学计划,耶鲁大学,纽黑文,CT 06510,美国2,美国2,耶鲁大学,纽黑文,纽黑文,CT 06520,美国3耶鲁大学医学院,纽黑文,纽黑文,CT 06510,CT 06510,美国4 Wu Tsai Institute,Yale Movity,New Haven,New Haven,Neur,CT 06510美国纽黑文市医学院,美国6耶鲁大学精神病学系,纽黑文,美国康涅狄格州06520 &Anirvan S. Nandy博士耶鲁大学P.O.Box 208047 New Haven,CT 06520 314-307-0498 Steve.chang@yale.edu.edu&Anivan.nandy@yale.edu摘要,近年来,神经科学领域越来越多地认识到在自然主义环境中研究动物行为以使自然主义环境中的动物行为的重要性,以使自然主义在道德上具有相关的洞察力洞察力,并具有相关的洞察力。普通的摩尔马斯群岛(Callithrix jacchus)由于其尺寸较小,亲社会性质和与人类的遗传近端,因此成为了这项工作的关键模型。然而,传统的研究方法通常无法完全捕捉马尔莫斯特社会互动和合作行为的细微差别。为了解决这一关键的差距,我们开发了用于自动拉力的摩尔摩斯特机器(Marmoaap),这是一种新型的行为式仪器,旨在研究共同果果会中的合作行为。marmoaap通过启用可以与视频和音频记录集成的高通量,详细的行为输出来解决传统行为研究方法的局限性,即使在自然主义环境中,也可以进行更细微和全面的分析。我们还强调了MarmoAAP在任务参数操作中的灵活性,该操作可容纳广泛的行为和单个动物能力。此外,Marmoaap提供了一个平台来对自然主义社会行为的神经活动进行调查。marmoaap是一种多功能且强大的工具,可促进我们对灵长类动物行为和相关认知过程的理解。这个新的设备弥合了与伦理学相关的动物行为研究与神经研究之间的差距,为使用摩尔马人作为模型生物体的认知和社会神经科学研究为未来的认知和社会神经科学研究铺平了道路。