计划 2023 财年估计 社区森林和开放空间 $0 合作土地 - 森林健康管理 $50,000 森林遗产 $0 森林管理 $100,000 景观规模恢复 $0 州消防援助 $60,000 城市和社区林业 $100,000 志愿消防援助 $0 总计 $310,000 注:这笔资金用于州内所有实体,而不仅仅是州林务员办公室。 马绍尔群岛共和国 (RMI) 由 29 个环礁、五个孤岛和约 1,225 个独立岛屿和小岛组成。群岛网络包含 70 平方英里的陆地,位于夏威夷和澳大利亚中间。所有马绍尔群岛的海拔都很低;陆地平均高出海平面 7 英尺。2021 年 7 月,人口估计为 78,831 人。超过三分之二的人口生活在马朱罗和埃贝耶环礁上。马绍尔群岛有五种独特的植被类型:环礁森林、红树林、沿海植被、咸水水生植被(生长在沿海潮滩上的海草)和栽培植被(农林)。自马绍尔人定居以来的数千年间,大部分内陆环礁森林都已转变为农林业。马绍尔的农林业是树木、木本灌木和草本植物的混合体,用于种植食物和其他林产品,尤其是面包果、椰子、露兜树和香蕉。自西方接触以来,许多地区都被管理为椰子种植园(占土地覆盖率的 70%),并且其他物种已被引进并融入农林业(尤其是果树)。自然资源和商业部 (MNRC) 由许多部门和计划组成,包括负责制定和实施林业计划的农业司。马绍尔群岛研究所林务员为农业部工作,并与马绍尔群岛学院和沿海管理咨询小组等各种合作伙伴合作。沿海管理咨询小组履行协调委员会和城市与社区林业委员会的职责。MNRC 与各种合作伙伴和利益相关者合作,提高林业计划实施的效率。计划目标
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
发展了一种通过测量近火星空间中氢能中性原子(H-ENA)反演太阳风参数的算法。假设H-ENA是由太阳风中的质子与外大气层中性子发生交换碰撞而产生的,在磁流体力学(MHD)模拟太阳风与火星相互作用的基础上,建立了H-ENA模型,研究了H-ENA的特性。结果表明,太阳风H-ENA与太阳风一样,是高速、低温的粒子束,而磁鞘H-ENA速度较慢、温度较高,能量分布较广。假设太阳风H-ENA通量服从麦克斯韦速度分布,高斯函数最适合拟合太阳风H-ENA通量,由此可以反演太阳风的速度、密度和温度。进一步基于H-ENA模型模拟的ENA通量研究表明,反演太阳风参数的精度与ENA探测器的角度和能量分辨率有关。最后,利用天问一号任务的H-ENA观测数据验证了该算法。反演后的上游太阳风速度与原位等离子体测量结果接近。我们的结果表明,从H-ENA观测数据反演的太阳风参数可以作为火星空间环境研究数据集的重要补充,因为火星空间环境研究缺乏对上游SW条件的长期连续监测。
两次火星探测任务旨在利用拉曼光谱仪等仪器探测生物分子作为灭绝或现存生命的标志。然而,关于拉曼可检测生物分子在火星环境中的稳定性仍有许多未知数,这影响了对结果的解释。为了量化拉曼可检测生物分子的稳定性,我们将七种生物分子暴露在国际空间站外的模拟火星环境中 469 天。紫外线辐射 (UVR) 强烈改变了拉曼光谱信号,但当样品被屏蔽以免受紫外线照射时,只观察到微小的变化。这些发现为在火星地下寻找生物特征的火星任务操作提供了支持。该实验证明了在太空暴露后通过拉曼光谱在火星风化层类似物中检测生物分子的可检测性,并为在目标环境中建立经过太空验证的光谱生物特征综合数据库奠定了基础。
她的阁下,马歇尔群岛共和国共和国总统希尔达·海恩(Hilda C. Heine)博士认识到,数十年来,气候变化构成的威胁,今天的社区正在感受到影响。这一直是全球野心的激烈拥护者,并试图激发所有国家紧急采取行动以应对这一全球危机。气候紧急情况对RMI的影响很难夸大。国王潮汐正在我们的海岸线上吞噬;暴风雨摧毁了学校和房屋;我们的社区面临干旱和粮食短缺;与气候变化有关的登革热爆发使我们的医疗保健系统紧张。我们人民的安全,健康,文化,生活方式和人权受到威胁。我为RMI的承诺至少降低了58%的温室气体排放量至2035年的水平。脱碳的努力已经使马歇尔人受益。从化石燃料到太阳能的过渡不仅提供了更大的能源安全和更清洁的空气,而且还提供了新的就业机会。我们为解决海洋运输排放的努力使RMI处于低碳运输的最前沿,开发了一种新容器,结合了风辅助推进,燃油效率的发动机和太阳能,并为我们提供了一个机会,可以利用我们的本地建筑技能,创建传统风能的独木舟与跨越国际运输的新技术。即使明天的所有全球排放都停止,我们的岛屿也将继续面临数十年的温室气体排放的威胁。我们知道,仅我们的行动不足以使世界置于《巴黎协定》中达成的1.5温度限制之内,并且继续剥削化石燃料将使我们的国家处于未来几十年的风险。这就是为什么我们要适应气候变化的预期影响。我们的国家适应计划旨在使我们能够为建立韧性和减少脆弱性绘制自己的课程。即使采取了最密集的适应措施,损失和损害已经发生,并且是
与已经进行了合作或可以开发合作的国家和国际合作机构的建立联系:博洛尼亚大学物理与天文学系 - 实际上;博洛尼亚大学工业工程系;罗马大学La Sapienza物理学系;罗马大学拉萨皮安扎大学航空工程系;托尔加塔大学物理学系;托尔加塔大学,天体物理学系; Basilicata大学工程学院;佛罗伦萨大学信息工程系; Hemory University,数学系。
表和图表的列表表1:本研究中使用的麻雀粪便样品数量。原始计数是从每个站点收集的粪便样本数量。每个麻雀物种的数量是通过现场通过质量控制的样品数量。过滤计数是完整数据集中每个站点的粪便样本的最终数。图1:通过读取深度在每个麻雀粪便样品中观察到的ASV的丰富度的稀疏曲线。图2:观察到的ASV丰富度的稀疏曲线,用于总读数少于2,000的粪便样品。图3:用于比较羊膜麻雀的同胞和同种异体饮食的地点。同种异体位点被鉴定为一个主要物种,而两种物种相似的位点被分类为这些物种的同胞。仅显示收集弹药样品的位置。图4:发生的频率或存在猎物分类子的粪便样品百分比,在六种麻雀种类的班级水平上。图5:六种潮汐沼泽麻雀物种饮食中猎物类别的发生百分比。发生的百分比表示每个物种的每个猎物分类群中所有发生的粪便样品中所有发生的百分比。麻雀物种按降低盐沼泽的顺序排列:海边麻雀(SESP),盐玛斯麻雀(萨尔斯),尼尔森的麻雀(NESP),沼泽麻雀(SWSP),Song Sparrow(SOSP)和Savannah Sparrow(Savannah Sparrow(Savs)。仅显示了12个最常见的订单。图6:猎物分类群的平均相对阅读丰度(RRA)在班级六种潮汐沼泽麻雀的饮食中。rra表示每个粪便样品中猎物分类读的百分比,在每个物种的所有样品中平均。麻雀物种按降低盐沼泽的顺序排列:海边麻雀(SESP),盐玛斯麻雀(萨尔斯),尼尔森的麻雀(NESP),沼泽麻雀(SWSP),Song Sparrow(SOSP)和Savannah Sparrow(Savannah Sparrow(Savs)。图7:出现的频率,或存在猎物分类子的粪便样品百分比,在所有六种麻雀种类的订单水平上。
埃邦(法国),2025 年 1 月 21 日 - 艾克斯-马赛-普罗旺斯大都会区委托 Waga Energy 对位于普罗旺斯地区艾克斯的阿尔布瓦垃圾填埋场的沼气进行升级。Waga Energy 将在该地点建造一个可再生天然气生产装置,并安装一座光伏发电厂为该设施供电。艾克斯-马赛-普罗旺斯大都会区和 Waga Energy(从垃圾填埋场生产可再生天然气 (RNG) 的全球专家)签署了一份合同,在位于法国南部普罗旺斯地区艾克斯市的阿尔布瓦垃圾填埋场生产 RNG。该合同是该机构进行招标程序后签订的,并由 Waga Energy 中标。作为该项目的一部分,Waga Energy 将在该地点资助和建造一个净化装置,使用其专利的 WAGABOX® 技术将垃圾填埋气转化为 RNG,一种可再生的化石天然气替代品。 WAGABOX® 装置将于 2026 年投入使用,最初由 Waga Energy 运营 16 年。根据大都会的要求,该装置的部分电力将由一座输出功率为 1 兆瓦峰值 (MWp) 的光伏电站提供,该电站也将由 Waga Energy 建造和运营。WAGABOX® 装置每年将生产 188,000 MMBtu (55 GWh) 的 RNG,相当于约 9,000 户当地家庭的用电量。通过减少化石天然气的使用,该装置的投入使用将避免每年向大气排放约 15,000 吨二氧化碳当量 1 。根据签署至 2043 年 3 月的可再生天然气购买协议,RNG 产量将直接注入当地的天然气管道网络,并由 Waga Energy 出售给一家能源公用事业公司。此外,该能源公用事业公司将购买法国根据 2021 年法国气候与复原力法案出台的一项支持 RNG 生产的新计划颁发的沼气生产证书(Certificats de Production de Biogaz 或“CPB”)。通过出售 RNG 和 BPC 所获得的收入将由 Waga Energy 和艾克斯-马赛-普罗旺斯大都会区分享。作为该项目的一部分,从 2025 年 3 月起,Waga Energy 还将接管阿尔布瓦垃圾填埋场的垃圾填埋气收集网络的运营,以及目前通过发电来利用垃圾填埋气的三台发动机。用 WAGABOX® 装置替换这些发动机将能够增加能源产量,并提供本地可再生能源,这些能源可以通过现有的天然气基础设施轻松储存和运输。