Arup Banerjee 博士 banerjee 教授 Mukesh Joshi 博士 mukesh 教授 JAChakera 博士 chakera 教授 Satya Ram Mishra 博士 srm 教授 Aparna Chakrabarti 博士 aparna 教授 密度泛函理论 合金、氧化物和二维材料 (1) 基于 Heusler 合金的磁隧道结的电子和传输特性:第一性原理研究;计算材料科学,216,111582 (2023);(2) 揭示 Co1+xMnSb Heusler 合金中的超结构排序及其对结构、磁性和电子特性的影响;Phys. Rev. B 105, 184106 (2022);(3) 研究 CoMnSb 超结构的结构、磁性和电子特性:DFT 研究;计算材料科学,210,111441 (2022); (4) 半 Heusler 硫族化合物的力学、晶格动力学、电子和热电性质研究:DFT 研究;固体物理与化学杂志,167,110704 (2022); (5) 间接带隙 AlGaAs 中 X 谷电子自旋弛豫中线性 k 向 Dresselhaus 分裂的特征;物理评论 B 104,115202 (2021); (6) Ni2MnGa(001) 表面 Cr 吸附层的表面终止和厚度相关磁耦合:从头算研究;磁学与磁性材料杂志,540,168398 (2021); (7) 从第一性原理计算研究 H2、CO 和 NO 气体分子在硫化钼和硫化钨单层上的吸附; Surface Science, 714, 121910 (2021); (8) 裂变气体原子 Xe 和 Kr 在用 3d 过渡金属功能化的 MoS2 单层上的吸附的从头算研究;Journal of Physical Chemistry C, 125(2), 1493 (2021); (9) 探究 CoxTaZ(Z = Si、Ge、Sn 和 x = 1、2)的马氏体转变和热电性质:基于密度泛函理论的研究;Journal of Physics - Condensed Matter, 33(4), 045402 (2020); (10) 高性能锂离子
近年来,激光添加剂制造(LAM)技术引发了航空航天场的制造革命[1,2]。该技术使用高能激光束融化合金粉末。熔融池是连续形成的,然后迅速形成固体,从而将层沉积到近乎网络的金属成分[3]。钛合金作为重要的结构金属具有高强度,高韧性,低密度和良好耐腐蚀性的优势[4-6]。使用LAM准备钛合金零件有望获得高性能和高质量的关键组件。钛合金零件在LAM过程中经历了高温梯度和高冷却速率,从而导致与传统材料的微观结构差异很大。通常,在先前的β晶粒中存在α相,马氏体α'相或两者的混合物,并且连续α相也沿先前的β晶界嵌入[7-9]。Carroll等。 [10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。 此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。 通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。 Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Carroll等。[10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Yadroitsev等。[16]报告说,在β相过渡温度附近产生了大量球形α相。Zhao等。Zhao等。[17]通过控制冷却速率,获得了两种类型的篮子编织和菌落结构的微观结构。拉伸结果表明,前者具有更高的强度和韧性,这可能归因于篮子编织结构中的层状α相,从而有效地减少了脱位长度并分散局部应力浓度。但是,由于缺乏在拉伸过程中微观结构演变的观察,变形和失败
001 1-4 全体演讲 1 Sung-Joon Kim 奥氏体不锈钢中间隙原子的作用:C 与 N 002 5-7 1 相变 Tadashi Furuhara 界面工程在控制钢的微观结构和性能中的应用 003 8-11 1 相变 Yasunobu Nagataki 汽车用超高强度钢板的最新研究进展 006 12-15 1 相变 Mahesh Chandra Somani 北极应用新型超高强度钢的设计和加工的最新进展 007 16-18 1 晶粒结构控制 Munekazu Ohno 包晶钢凝固过程中粗柱状奥氏体晶粒的形成 008 19-20 1 晶粒结构控制 Shuang Xia 晶界特征分布对 316L 不锈钢力学性能的影响 009 21-22 1 晶粒结构控制Toshio Ogawa 通过三维微观结构分析表征纯铁和低碳钢的再结晶行为 010 23-25 1 晶粒结构控制 YongJie Yang 取向硅钢中一次再结晶织构的发展 011 26-29 1 第二相粒子控制 Yutaka Neishi 通过控制夹杂物形态提高特殊钢棒材和线材的性能 012 30-33 1 第二相粒子控制 Ling Zhang 含 2 wt%Nb 低碳钢的力学性能 013 34-37 1 第二相粒子控制 Wei Wang 通过测量高温下晶粒生长获得 TiN 在奥氏体中的溶度积 015 38-40 2 强度和变形 1 Nobuhiro Tsuji 完全再结晶超细晶粒钢同时实现高强度和高延展性的可能性 016 41-43 2 强度与变形 1 Elena Pereloma 揭示加工参数之间的关系,铁素体高强度低合金钢的相间析出与强化 017 44-47 2 强度与变形 1 Genichi Shigesato 高韧性钢板的微观组织控制 018 48-50 2 强度与变形 1 Norimitsu Koga 时效超低碳钢的低温拉伸性能 019 51-54 2 强度与变形 1 Myeong-heom Park 不同马氏体硬度的铁素体+马氏体双相钢的局部变形行为 020 55-57 2 强度与变形 2 Noriyuki Tsuchida 从应力分配角度改善力学性能 021 58 2 强度与变形 2 Stefanus Harjo 利用脉冲中子衍射观察钢材的变形行为 022 59 2 强度与变形 2 Si Gao 晶粒尺寸对钢材拉伸性能的影响304 不锈钢的原位中子衍射研究 023 60 2 先进钢种 1 Jungho Han 提高中锰钢低温韧性的可能性搅拌摩擦焊 024 61 2 先进钢种 1 Hongliang Yi 涂层/基体界面碳富集及其对 Al-Si 涂层压淬钢弯曲性能的影响 027 62-65 2 先进钢种 1 Dirk Ponge 高强度中高锰钢中的氢脆:从基础认识到新的抗氢微观结构设计 028 66-69 3 氢脆 Young-Kook Lee 微观结构和变形对珠光体钢氢脆的影响 029 70 3 氢脆 Hong Luo 环境引起的铁基多元合金的退化 030 71-73 3 氢脆 Shusaku Takagi 氢脆评估问题 031 74-76 3 氢脆 Akinobu Shibata 马氏体钢中的氢相关裂纹扩展行为 032 77-78 3 氢脆 Tomohiko Hojo 超高强度 TRIP 辅助钢的氢脆性能评估 033 79 3 耐热钢的设计 Satoru Kobayashi 提高长期结构稳定性的铁素体耐热钢的设计 034 80 3 设计耐热钢的设计 Shigeto Yamasaki Co 添加对高铬铁素体钢蠕变强度和磁性能的影响 035 81-84 3 耐热钢的设计 Nobuaki Sekido 利用纳米 SIMS 观察耐热铁素体钢在回火过程中硼偏析的变化 036 85-88 3 耐热钢的设计 Yoshiaki Toda 提高沉淀强化铁素体钢的蠕变强度 037 89-92 3 耐热钢的评价 Masatsugu Yaguchi 长期使用条件下 91 级钢的微观结构和蠕变强度 038 93 3 耐热钢的评价 Masatoshi Mitsuhara 晶界特征对 9Cr 铁素体耐热钢中 M23C6 碳化物生长的影响 039 94-97 3 18Cr 9Ni 3Cu Nb N钢的蠕变变形行为 040 98-101 3 耐热钢的评价 张胜德 长期使用超级304H钢锅炉管的组织与力学性能
钢是一种全球使用的结构材料,也是推进社会和经济体的主要因素。高级高强度钢(AHSS)是一类高性能钢,这对于汽车行业尤为重要,因为燃料效率的需求不断提高,降低排放和被动安全性。研究主题“高级高强度钢的新发展和挑战”旨在收集有关AHSS设计,处理和表征的最先进的研究。本期包括七个经过同行评审的研究文章,涵盖了多种钢类类型,例如中型锰(MN)钢,孪生诱导的可塑性(TIP)钢,变换诱导的可塑性(Trip)钢,淬火和分配的(Q&P)(Q&P)钢(Q&P)钢,低碳铁矿钢和压榨钢。在这些研究中,对热处理途径对AHS的微观结构和机械性能的影响进行了广泛研究,并提出了一些新的加工途径。pan和他通过多种热处理(包括中批评退火(IA),淬火和分区(Q&P)以及IA和Q&P的组合,他通过多种热处理获得了铁氧体,奥氏体和/或马氏体的三种微观结合组合。在这些微观结构之间比较了体积分数的变化和保留奥氏体的稳定性的变化。通过调整加工途径来获得高强度和高伸长率的不同组合,说明了如何调整培养基钢的拉伸性能,以促进其适用于广泛的汽车需求。Glover等。 Park等。Glover等。Park等。Park等。提出的新型加工途径以改善中型MN钢的机械性能。与单个中批评性退火处理相比,证明在中型MN钢两倍浸泡中添加回火或适应性热处理。这项工作重点介绍了修改中MN钢的机械性能的其他机会。众所周知,谷物的修复可以提高钢的强度。严重的塑性变形(SPD)过程通常用于创建平均晶粒尺寸小于1μm的UFG微结构。但是,在扩大大规模钢生产的SPD方法方面存在很大的困难。进行了一种新型的循环热处理,以在2 MN-0.1 C钢中产生UFG铁氧体。事实证明,环状热处理可有效降低奥斯丁岩晶粒尺寸至11μm。平均晶粒尺寸为4.5μm,几乎随机纹理的菌丝铁矿结构仅通过循环热处理成功获得,并提供了高强度和较大的拉伸延展性。
病例钢钢通常用于齿轮和轴承应用。这类材料的低碳含量可为不同生产技术(如形成,锻造和焊接)提供出色的加工性。但是,低碳含量限制了这组材料的可靠性。一种特殊的热处理被称为病例硬化,对于提高这些材料的可耐用性是必要的。这种热处理是化石或硝化的,然后进行了亚分化的强化操作以改善表面硬度。渗碳的局限性是该过程耗时,薄壁的零件可能会变形[1]。长时间的时间使这个过程不吸引小批量尺寸的织物。此外,发现仅马氏体结构在材料的耐磨性方面不利[2]。说到耐磨性,仅产品的磨损可能导致多达全国国内生产总值的4%的经济成本[3]。低合金钢的病例硬化主要导致马氏体微观结构,因为几乎所有碳都在马氏体内捕获[4]。调节这些产品通常是为了改善工件的延展性。关于耐磨性,诸如碳化物之类的次级阶段比单纯的马氏体微观结构更优选。为了形成碳化物(VC)或碳化钨(WC)等碳化物,需要超过500℃的高温温度[5]。但是,这些形成碳化物的元素通常不存在或仅在病例钢钢内以较小的比率存在。它们的缺席阻碍了次级碳化物的降水的影响,从而限制了最终部分的耐磨性。因此,需要替代仅碳增强的替代方案,以进一步改善病例钢钢的部分。基于激光的定向能量沉积(DED-LB/M)Pro-VIDESA有望altertantiveto病例硬化,用于调整产品的表面硬度[6]。DED-LB/M中的灵活处理允许生成三维结构,修复磨损的表面或沉积耐磨性覆盖层到高度载荷的表面上。由于可以同时使用DED-LB/m同时使用多种粉末材料,因此可以局部调整最终工件的化学成分[7]。这种高灵活性打开了在需要的情况下在具有量身定制特性的自由形式表面上涂上涂料的可能性。应用的一个潜在领域是将渗碳产品代替仅以小批量制造的大零件。这样做,可以进行长时间的固定时间。DED-LB/M维修应用程序的巨大潜力也使当地磨损的配件进行翻新。使用DED-LB/M进行维修应用,需要产生具有与先前碳液材料相似的材料硬度的硬表面。知道只有固定钢的马氏体硬化产品的前提不利,可以添加进一步的合金元素,以提高关键特性,例如耐磨性或硬度。结合了例如,钨可以帮助改善固醇溶液加强以及高温耐药性的材料的性质[8]。
