抽象的结构性马氏体变换实现了各种应用,从高冲程致动,感应到能源有效的磁性制冷和热蛋白网络能量收集。所有这些新兴应用程序都受益于快速转换,但是直到现在尚未探索其速度限制。在这里,我们证明了热弹性马氏体对奥斯丁岩转化的转化可以在10 ns之内完成。我们使用纳米秒激光脉冲加热外延Ni -Mn -GA膜,并使用同步加速器衍射来探测初始温度和过热对转化速率和比率的影响。我们证明,热能的增加可以更快地驱动这种转换。尽管观察到的速度极限为2.5×10 27(JS)1个单位单元格留出足够的空间以进一步加速应用,但我们的分析表明,实际极限将是切换所需的能量。因此,马氏菌的转化遵守与微电子相似的速度限制,如玛格鲁斯 - 左旋蛋白定理所表达的。
高级高强度钢(AHSS)广泛用于汽车行业[1-7]。它们的高强度和延展性可以保证撞车性并减少汽车的整体体重,从而有助于更大的被动安全性和更少的污染排放[8-11]。在AHSS中,Martensitic Steels(MS-AHSS)用于生产对冲击安全性至关重要的汽车结构组件,例如前后保险杠梁,门抗入口杆,侧面凹凸增强型和屋顶横梁[12-14]。MS-AHSS的成功是其强度和延展性的结果,以及相对较低的成本[12,15]。但是,由于其微观结构,MS-AHSS特别容易受到氢的含量(HE)[16]。H可以在生产过程中被钢吸收,例如涂层,焊接,热处理,绘画[17]或在特定的服务条件下[12]。钢中氢(H)的存在可以降低强度,延展性,疲劳性和断裂韧性[2,12,17 - 21]。文献中已经描述了两个主要的现象:在明显的亚临界裂纹或最终断裂后的最终断裂,没有证据表明先前的裂纹形成和稳定的生长(在[22]中称为HESC和HEFT)。以前的情况是可以用断裂力学方法建模的,是文献中研究最多的情况,而没有亚临界裂纹生长的情况通常与延展性降低有关而没有强度损失[12,19,23 - 27]。MS-AHSS组件通常是制造的已经提出了几种机制来规定H的含义,以及其他机制:(i)HEDE(ii)帮助(iii)HAM [21,22,24,28]。
摘要 一种可能表现出具有不同光电特性的多个晶相的材料可用作相变存储材料。当两个竞争相具有较大的电子结构对比度并且相变过程为无扩散和马氏体时,灵敏度和动力学可以增强。在这项工作中,我们从理论和计算上说明了这种相变可能发生在 IV 族单硫属化物 SnSe 化合物中,该化合物可以存在于量子拓扑平凡的 Pnma -SnSe 和非平凡的 Fm 3 m -SnSe 相中。此外,由于这些相的电子能带结构差异,揭示了 THz 区域的光学响应的巨大差异。根据驱动电介质的热力学理论,提出了使用具有选定频率、功率和脉冲持续时间的线性偏振激光进行光机械控制以触发拓扑相变。我们进一步估计了驱动可在皮秒时间尺度上发生的无障碍跃迁的临界光电场。这种光致动策略不需要制造机械接触或电引线,只需要透明度。我们预测,伴随大熵差的光驱动相变可用于“光热”冷却装置。
摘要Burckhardt Compression Holding AG总部位于温特图尔,是一家具有国际活跃的往复式压力机制造商,在其Laby®往复式压缩机中使用三件式活塞。由于其铸造设计,活塞的重量很高,这限制了活塞的大小,特别是对于大直径。因此,正在寻找解决方案在轻质设计中使用金属添加剂制造工艺制作活塞,以抵消这些挑战。在各个科学和工业领域应用的减轻体重的创新技术之一是激光直接金属沉积(DMD)。因此,一个项目是从Burckhardt压缩开始的,以降低质量,从而实现更高的工作速度。这项研究提供了一个工作流程,可通过直接金属沉积(DMD)制造1.4313的轻质活塞,直径约为342 mm,高度为140 mm。活塞的特征是不同的片段,这些片段在传统上和附加性制造中以克服机器限制。活塞皇冠被连接到添加剂制造的部分,并由CO 2激光焊接密封。降低DMD的激光功率可降低温度,因此,锰和硅的氧化和降低载气流量可提高堆积速率,并降低了湍流诱导的氧化。每层交替的进料方向提高了几何准确性,并避免了在锋利的角落积累的材料。一种方法被发现在堆积方向上定量地表明半径的几何精度。选择了激光焊接的焊接类型和接缝以实现良好的力流;但是,需要夹紧装置。为了减少隐藏的T关节的缺口效应,考虑了双重焊接策略。该设计使40%的重量减轻,与铸件活塞相比,重量为40 kg,重量为24千克。的金理分析和3D扫描。该研究显示了DMD的局限性和挑战以及如何通过部分分割克服机器的局限性。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
近等原子NiTi相的Ni含量在稳定的成分范围内[1]。因此,发生MT的温度范围决定了NiTi主要用作致动器或基于形状记忆效应或超弹性的生物医学设备。结合金属AM工艺可获得的复杂几何特征,利用形状记忆效应可以制造4D材料,其中时间维度被添加到材料几何形状中。由于NiTi合金是研究最广泛的SMA之一,因此它们也被探索作为AM材料,主要是通过使用粉末床熔合技术,例如选择性激光熔化(SLM)、电子束熔化(EBM)和直接能量沉积(DED)[2e4]。这些AM工艺的特点是几何精度高、能够创建内部通道、表面粗糙度合理,以及能够在材料中产生晶格结构[5e7]。然而,与粉末床熔合技术相比,激光金属沉积 (LMD) 等 DED 工艺吸引的研究关注较少 [8,9]。镍钛诺 (镍和钛的合金) 的 AM 在控制构建部件中的最终 Ni 含量方面可能非常关键,特别是由于 Ni 的优先汽化 [10]。这意味着在 AM 过程中可能会发生化学变化,导致原料偏离初始化学成分。AM 工艺过程中的 Ni 损失会导致部件的最终使用问题以及由材料形状记忆行为的局部差异引起的工艺不稳定性。因此,应仔细选择原料材料以潜在地补偿 Ni 的损失。在这方面,通过雾化生产粉末原料对于控制和维持生产批次内和生产批次之间所需的化学成分可能很麻烦。这种变化对 NiTi 合金性能来说可能更为关键,因为它对其化学成分高度敏感。已有研究调查了粉末和线材原料的元素混合,以解决 DED 工艺中化学成分变化的问题 [11, 12]。尽管 NiTi 粉末原料尚未被 AM 最终用户广泛使用,但细 NiTi 线材在市场上广泛可用,并正在开发用于各种应用。商用 NiTi 线材有不同的直径,价格明显低于具有相同化学成分的粉末原料。在使用 NiTi 线材的 DRD 工艺中研究了电弧和等离子等不同热源 [13 e 17]。最近,已证明使用脉冲波 (PW) 激光发射可有效沉积小直径线材,并且与线材直径相比,轨道宽度不会显着增大 [18]。微激光金属丝沉积 (m LMWD) 是一种制造小型 3D 组件或小型半成品零件(例如板、管和环)的好方法,这些零件由镍钛合金制成。与粉末沉积相比,该工艺本质上更安全,原料尺寸与市售 NiTi 丝的直径(0.4 e 0.5 毫米)相当。m LMWD 工艺的可行性已在多种材料中得到证实,例如不锈钢 [18]、AlSi 12 合金 [19] 和以 Dy 为主要合金的 Mg 合金
Flore Villaret、Xavier Boulnat、Pascal Aubry、Julien Zollinger、Damien Fabrègue 等人。马氏体钢中 δ 铁素体到奥氏体相变动力学的建模:应用于增材制造中的快速冷却。 Materialia, 2021, 18 (2021) (101157),第18页 (2021)。 “10.1016/j.mtla.2021.101157”。 “cea-03330729”
本研究探讨了通过高功率和高速激光表面改性 (LSM) 制造 Ti6Al4V 功能梯度材料。原始样品微观结构由细长的等轴 α 相和 β 相晶界组成。对这些样品应用了九种不同的 LSM 工艺参数集。扫描电子显微镜显示,在所有情况下,激光处理样品的表面附近都有细小的针状马氏体相。观察到马氏体区下方的过渡微观结构区,其中有较大的等轴晶粒和一些马氏体 α 相生长。样品内部包含原始微观结构。发现在所有工艺参数集下进行表面改性后,表面粗糙度都会增加。进行了纳米压痕测试,以获得三相(即马氏体 α、等轴 α 和晶界 β)的硬度和模量。开发了双相晶体塑性有限元模型来研究单轴拉伸载荷下的三区功能梯度微观结构。硬化表面区域阻止了连续滑移带的扩展,而过渡区则阻止了样品外表面和内部之间过大的应力集中。