Y. Marzouk,T。Moselhy,M。Parno和A. Spantini。“通过度量传输的采样:简介”。在:不确定性量化手册中。ed。R. Ghanem,D。Higdon和H. Owhadi。Springer,2016年,pp。1-41,P。Jaini,K。Selby和Y. Yu。“平方之和多项式流”。:国际机器学习会议(ICML)。2019。L15 8/20
[1] T. Cui和F. Pillichshammer(2025)。伯恩斯坦近似及以后:通过基本概率理论的证明,元素der Mathematik,被接受,Arxiv:2307.11533。[2] T. Cui,J。Dong,A。Jasra和X. T. Tong(2025)。数值MCMC的收敛速度和近似精度,应用概率的进步,57(1),doi:10.1017/apr.2024.28。[3] T. Cui,G。Ditommaso,R。Scheichl(2024)。多级维度独立于可能性的MCMC,用于大规模反问题,反问题,40,035005。[4] Y. Zhao和T. Cui(2024)。张量训练方法用于状态空间模型中的顺序状态和参数学习,机器学习研究杂志,接受,ARXIV:2301.09891。[5] T. Cui,H。de Sterck,A。D. Gilbert,S。Polishchuk和R. Scheichl(2024)。多层次的蒙特卡洛方法用于随机对流扩散特征值问题,《科学计算杂志》,99(3),1-34。[6] T. Cui,S。Dolgov和R. Scheichl(2024)。使用张量列车进行的深度重要性采样,并适用于先验和后验罕见的事件估计,《 Siam Scientific Computing杂志》,46(1),C1 – C29。[7] T. Cui,S。Dolgov,O。Zahm(2023)。可扩展的有条件深度逆罗森布拉特使用张量列和基于梯度的尺寸降低,计算物理学杂志,485,112103。[8] T. Cui,S。Dolgov(2022)。使用平方逆的Rosenblatt传输,计算数学基础,22(6),1863– 1922年对张量列车的深度组成。[9] T. Cui,X。T。Tong和O. Zahm(2022)。先前的标准化了贝叶斯反问题,逆问题,38(12),124002。[10] T. Cui,X。T. Tong(2022)。统一的绩效分析对信息性的子空间方法,Bernoulli,28(4),2788–2815。[11] O. Zahm,T。Cui,K。Law,Y。Marzouk和A. Spantini(2022)。非线性贝叶斯逆问题的认证维度降低,计算数学,91(336),1789–1835。[12] T. Cui,Z. Wang和Z. Zhang(2022)。通过非线性流变学,计算物理学的通信,ARXIV:2209.02088,一种用于冰川建模的变分神经网络方法。[13] L. Bian,T。Cui,B.T。 Yeo,A。Fornito,A。Razi,J。Keith(2021)。 使用功能性MRI,Neuroimage,244,118635识别大脑状态,过渡和社区。div> [14] T. Cui,O。Zahm(2021)。 无数据的贝叶斯反问题,反问题的无数据信息尺寸减小,37(4),045009。 [15] J. Bardsley,T。Cui(2021)。 基于优化的非线性层次统计反问题的MCMC方法,《不确定性量化》的暹罗/ASA期刊,9(1),29-64。 [16] C. Fox,T。Cui,M。Neumayer(2020)。 随机降低了效率的大都市量的前向模型,并应用于地下流体流量和电容层析成像,《辉煌的地质杂志》,《地貌杂志》,11(1),1-38。 [17] J. Bardsley,T。Cui,Y。Marzouk,Z。Wang(2020)。 [18] R. Brown,J。Bardsley,T。Cui(2020)。 [19] S. Wu,T。Cui,X。Zhang,T。Tian(2020)。[13] L. Bian,T。Cui,B.T。Yeo,A。Fornito,A。Razi,J。Keith(2021)。 使用功能性MRI,Neuroimage,244,118635识别大脑状态,过渡和社区。div> [14] T. Cui,O。Zahm(2021)。 无数据的贝叶斯反问题,反问题的无数据信息尺寸减小,37(4),045009。 [15] J. Bardsley,T。Cui(2021)。 基于优化的非线性层次统计反问题的MCMC方法,《不确定性量化》的暹罗/ASA期刊,9(1),29-64。 [16] C. Fox,T。Cui,M。Neumayer(2020)。 随机降低了效率的大都市量的前向模型,并应用于地下流体流量和电容层析成像,《辉煌的地质杂志》,《地貌杂志》,11(1),1-38。 [17] J. Bardsley,T。Cui,Y。Marzouk,Z。Wang(2020)。 [18] R. Brown,J。Bardsley,T。Cui(2020)。 [19] S. Wu,T。Cui,X。Zhang,T。Tian(2020)。Yeo,A。Fornito,A。Razi,J。Keith(2021)。使用功能性MRI,Neuroimage,244,118635识别大脑状态,过渡和社区。div>[14] T. Cui,O。Zahm(2021)。无数据的贝叶斯反问题,反问题的无数据信息尺寸减小,37(4),045009。[15] J. Bardsley,T。Cui(2021)。基于优化的非线性层次统计反问题的MCMC方法,《不确定性量化》的暹罗/ASA期刊,9(1),29-64。[16] C. Fox,T。Cui,M。Neumayer(2020)。随机降低了效率的大都市量的前向模型,并应用于地下流体流量和电容层析成像,《辉煌的地质杂志》,《地貌杂志》,11(1),1-38。[17] J. Bardsley,T。Cui,Y。Marzouk,Z。Wang(2020)。[18] R. Brown,J。Bardsley,T。Cui(2020)。[19] S. Wu,T。Cui,X。Zhang,T。Tian(2020)。基于功能空间的基于可扩展优化的采样,《暹罗科学计算杂志》,42(2),A1317 – A1347。贝叶斯逆问题中的晶状麦片先验的半变量图超参数估计,逆问题,36(5),055006。一种用于推断遗传调节网络的非线性反向工程方法,PEERJ,8,E9065。[20] T. Cui,C。Fox,C.,M。O'Sullivan(2019)。大规模逆问题的自适应误差模型 - 延迟 - 受众MCMC中降低的模型的随机校正,并应用于多相性逆问题,《工程数值国际杂志》,118(10),578-605。[21] T. Cui,C。Fox,G。Nicholls,M。O'Sullivan(2019)。使用平行马尔可夫链蒙特卡洛来量化地热储层校准中的不确定性,国际不确定性量化杂志,9(3),295–310。[22] S. Thiele,L。Grose,T。Cui,S。Micklethwaite,A。Cruden(2019)。从数字数据中提取高分辨率结构取向:贝叶斯方法,结构地质杂志,122,106–115。[23] C. Reboul,S。Kiesewetter,M。Eager,M。Belousoff,T。Cui,H。DeSterck,D。Elmlund,H。Elmlund(2018)。快速接近原子分辨率单粒子3D重建,简单,结构生物学杂志,204(2),172-181。[24] A. Spantini,T。Cui,K。Willcox,L。Tenorio和Y. Marzouk(2017)。贝叶斯线性反问题的面向目标的最佳近似,《暹罗科学计算杂志》,39(5),S167 – S196。[25] Z. Wang,Y。Marzouk,J。Bardsley,T。Cui和A. Solonen(2017)。贝叶斯的逆问题L 1先验:随机化 - 优化方法,Siam on Scientific Computing杂志,39(5),S140 – S166。
数字阴影(DS),它利用机器学习驱动的数据同化技术,例如非线性贝叶斯过滤和生成AI(Spantini,Baptista和Marzouk 2022; Gahlot,Orozco等人2024),为监视CO 2存储提供了更详细,更可靠的方法(Herrmann 2023; Gahlot等人。2023; Gahlot,Li等。2024; Gahlot,Orozco等。2024)。通过将不确定性(如渗透率)纳入储层特性,该框架提高了CO 2迁移预测的准确性,包括羽状压力和饱和度,从而降低了GCS项目的风险。但是,数据同化取决于有关储层特性的假设,将储层状态与地震特性联系起来的岩石物理模型以及初始条件。如果这些假设不准确,则预测可能会变得不可靠,进而将危害GCS操作的安全性。减轻这种风险的一种方法是增加用于训练负责数据同化过程的神经网络的预测合奏 - 将先前的预测样本映射到后部。在本演讲中,我们证明,通过合并各种岩石物理模型来增加预测集合,从而减轻了使用不准确模型的负面影响(例如,均匀与斑块饱和模型)。此外,我们发现在某些情况下,集成增强可以提高预测精度。
该报告是由佛罗伦萨法规学院(FSR)针对非洲欧盟能源合作伙伴关系(AEEP)作为介绍性背景文件,旨在发起有关非洲与欧洲之间跨大陆绿色氢机会的讨论。该报告执行的FSR专家是Swetha Ravi Kumar Bhagwat,Maria Olczak,Pradyumna Bhagwat,Andris Piebalgs和Ilaria Conti。该报告是通过结合文献综述和包括其他专家(其他专家)的独家网络研讨会来开发的。The work was enriched by peer series in consultation with the AEEP steering committee and reviews graciously provided by the Department for Infrastructure and Energy at the African Union Commission (AUC), by DG DEVCO, DG ENER, DG GROW at the European Commission, by the German Federal Ministry of Economic Cooperation and Development (BMZ), by the Ministry of Electricity and Renewable Energy of the Arab Republic of Egypt, by the Common Market for Eastern and欧盟技术援助设施(欧盟TAF)和FCH联合承诺。非洲欧盟能源伙伴关系的秘书处协调了网络研讨会和审查过程。Thomas Roos(南非科学和工业研究委员会)和Tobias Bischof-Niemz(Enertrag AG)于2020年5月20日为网络研讨会做出了贡献,在此期间获得了其他专家观点。在审查过程中感谢以下人员的宝贵意见:Georgios Grapsas(Devco),Olgerts Viksne(Devco),Cecile Leemans(Ener),Aleksander Vigne(Ener),Aleksander Vigne(Ener),Stephan Fox(eu eu of to au auc),eu sef Marzouk(auc),daniel daniel daniel daniel dan caiet and caiet anderiel dan d'hoop, TAF),Daniel Werner(Get.Pro),Laura Gutierrez(Get.Transform),Peter Kinuthia,Johan van den Berg和Maximilian Heil(Aeep Secretariat)。