作者要感谢项目指导委员会的成员,即夏洛特·斯坦珀(EMR Group),帕特里克·巴雷特(Patrick Barrett),帕特里克·巴雷特(Patrick Barrett)(农业,食品和海军陆战队),玛丽·史密斯(CSO),肖恩·科尔根(欧洲环境局),保罗·巴特勒(Enterprise Ireland Ireland)(Enterprise Ireland)和Kevin Lydon(Epa)。我们还感谢EPA研究项目经理Dorothy Stewart和Oonagh Monahan,以及其他顾问的投入:南部地区废物管理办公室的Pauline McDonogh和Ursula Ahern,爱尔兰绿色建筑委员会的Rachel Loughrey和Circuléire的Geraldine Brennan。
劳伦斯利弗莫尔国家实验室与高能材料中心(劳伦斯利弗莫尔和桑迪亚国家实验室的合作伙伴)合作,正在开发安全、环保地销毁炸药和推进剂的方法,这是实验室辅助非军事化任务的一部分。由于冷战的结束和重点转向减少库存,许多常规和核武器都将退役并迅速拆除和非军事化。这些弹药的主要成分是炸药和推进剂,或高能材料。能源部拥有数千磅高能材料,这些材料来自潘特克斯工厂的拆除作业。国防部的非军事化库存中有数亿磅高能材料,每年增加数百万磅。
本证书仍为 BSI 财产,应根据要求立即归还。电子证书可在线验证。印刷版可在 www.bsigroup.com/ClientDirectory 上验证。请与上述范围或随附的附录一起阅读。信息和联系方式:BSI,Kitemark Court, Davy Avenue, Knowlhill, Milton Keynes MK5 8PP。电话:+ 44 345 080 9000 BSI Assurance UK Limited,在英国注册,编号为 7805321,地址为 389 Chiswick High Road, London W4 4AL, UK。BSI 集团公司成员。
(或溶剂混合物),可进一步加工成可印刷或可涂覆的油墨。这些悬浮液的行为通常用 Derjaguin-Landau-Verwey-Overbeek (DLVO) 理论描述,[3] 这意味着悬浮液中纳米片的浓度有一个上限,超过该上限悬浮液就会变得不稳定。[4] 尽管如此,高浓度悬浮液(油墨)对于形成渗透粒子网络是必要的,[5] 并且满足高通量印刷和涂层方法的流变学要求(例如高粘度)。无论浓度如何,悬浮液在热力学上都是不稳定的,并且粒子倾向于通过聚集来降低其表面能。[6] 为了降低沉降速度,必须最小化溶剂和 2D 材料之间的表面能差异,[3] 这使得分散介质的选择限制为少数溶剂,而这些溶剂的溶解度范围可能不适合后续加工。在传统的油墨配方中,为了解决上述问题,将二维材料悬浮液加工成可印刷或可涂覆的油墨,需要使用表面活性剂、粘合剂和流变改性剂等添加剂。[7–10] 例如,需要高浓度的聚合物粘合剂(如70 mg mL-1乙酸丁酸纤维素)来将石墨烯油墨的粘度提高到适合丝网印刷的水平。[11] 由于典型的添加剂会对电子性能产生不利影响(例如,
1. 学生将解释腐蚀背后的化学过程,包括氧化还原反应,并找出加速水下环境腐蚀的因素。 2. 学生将分析和比较水下机器人中使用的不同材料的特性,包括它们的耐腐蚀性、强度和特定应用的适用性。 3. 学生将应用与反应速率和材料科学相关的科学原理来设计一种水下机器人,以最大限度地减少腐蚀并在海洋环境中有效运行。 4. 学生将设计和制作水下机器人的原型,考虑材料选择、耐用性和在各种水下条件下的性能。 5. 学生将评估他们和同学的设计,提供建设性的反馈,并反思他们对腐蚀和材料科学的理解如何影响他们的工程解决方案。
第一单元:研究方法简介:研究的定义、研究人员的素质、研究问题的组成部分、科学研究中的各个步骤:假设、研究目的、研究设计、文献检索实验设计和规划、时间安排:目的和目标、预期结果、要采用的方法、为实现目的和目标而进行的实验规划、研究工作可重复性的重要性。数据收集:数据来源:原始数据、次要数据;实验的抽样优点和缺点、程序和控制观察、抽样误差 - I 型错误 - II 型错误。数据统计分析和拟合:统计学简介 - 概率、均值估计和属性;卡方检验、属性关联 -t 检验 - 标准差 - 变异系数。相关和回归分析。统计软件包介绍,绘制图表使用计算机进行研究:使用网络进行文献调查,处理搜索引擎准备演示文稿:i)研究论文:使用文字处理软件 MS
为了开发具有独特性能和功能的先进/下一代材料,人们开始研究自然界中常见的分级组装。[1,2] 为了遵循模仿自然的理念,使用可再生/天然来源的构建块来开发分级结构最近成为自下而上制造领域的中心主题。纳米纤维素就是这样一种构建块,包括纤维素纳米晶体 (CNC) 和纤维素纳米原纤维 (CNF)(图 1),它由地球上最丰富的可再生聚合物纤维素组成。近年来,CNC 和 CNF 引起了人们的极大研究兴趣,广泛应用于生物医学、储能、包装、复合材料和特种化学品等多个行业。 [3–5] 这些高度结晶、高纵横比的纳米颗粒由 β (1–4) 连接的 D-葡萄糖单元的线性均聚物组成,表现出令人印象深刻的机械性能和可调的表面化学性质。鉴于 CNC 和 CNF 的高强度、尺寸各向异性和天然来源,使用纳米纤维素作为开发分级组装体的功能性构件引起了人们的极大兴趣。由于人们对纳米纤维素的广泛兴趣,之前已经发表了几篇评论,涵盖了 CNC 和 CNF 的材料特性、生产、加工、特性策略、化学改性和潜在应用,我们建议任何感兴趣的读者阅读这些评论以获取更多信息。[2–19]
随着可再生能源生产越来越受关注,硅基太阳能光伏技术作为一种潜在的可持续能源生产方法正受到越来越多的关注。然而,硅基太阳能电池制造是一种非常耗能且复杂的技术,这使得太阳能电池组件成本高昂。钙钛矿在硅技术上占据上风,因为它采用溶液处理方法,效率可与硅电池相媲美,同时使用成本效益高且简便的合成和制造技术。钙钛矿的环境稳定性是商业化的最大障碍,DST-IIT 坎普尔综合清洁能源材料加速平台材料中心将制定新战略,以提高钙钛矿太阳能电池商业化的稳定性和性能。印度尤其具有将太阳能技术与智能能源管理系统相结合的巨大潜力,这将减少传统能源的使用。因此,该中心的目标之一是设计和开发用于太阳能热系统的性能材料,以及用于节能建筑的隔热砖和智能窗户。这种具有成本效益且适销对路的建筑集成技术可以促进印度工业进入相应市场,符合印度中央政府的“印度制造”、“印度创新”和“自力更生印度”倡议。