12. 电学性质................................................................................................321 12.1 简介...............................................................................................321 12.2 金属、绝缘体和半导体:能带理论....................................321 12.2.1 金属.......................................................................................324 12.2.2 半导体.................................................................................325 12.2.3 绝缘体.......................................................................................328 12.3 电导率的温度依赖性....................................................................328 12.3.1 金属.......................................................................................329 12.3.2 本征半导体.......................................................................330 12.4 非本征(掺杂)半导体的性质....................................................335 12.5 使用非本征(掺杂)半导体的电气设备.....................................336 12.5.1 p,n 结.....................................................................................336 12.5.2 晶体管................................................................................342 12.6 电介质...............................................................................................344 12.7 超导性...............................................................................................347 12.8 温度测量:教程��������������������������������������������������������������������������������352
功能分级的材料(FGM)是新一代的工程材料,其中微结构细节通过增强阶段的非均匀分布在空间上变化,请参见顶部图。工程师通过使用具有不同属性,大小和形状的增强件以及以连续的方式互换增强和矩阵阶段的作用(参考1)。结果是一个微观结构,该微观结构在宏观或连续尺度上产生连续或离散变化的热和机械性能。这一新的工程材料的微观结构的概念标志着材料科学和材料领域机制中革命的开始,因为它首次允许一个人将材料和结构上的考虑因素完全整合到结构组件的最终设计中。功能分级的材料是涉及严重热梯度的应用的理想候选物,从高级飞机中的热结构和
149. QUINZI Matteo (In Pers.) 洛桑联邦理工学院 (EPFL) 材料理论与模拟 (THEOS) 和国家新型材料计算设计与发现中心 (MARVEL)
淀粉样蛋白功能材料由淀粉样蛋白纤维结构块制成,这些结构块由淀粉样蛋白天然蛋白或合成肽体外生产,具有多种功能,包括环境科学和生物医学、纳米技术和生物材料。然而,淀粉样蛋白的可持续和可负担来源仍然是大规模应用的瓶颈,迄今为止,人们的兴趣仍然主要局限于基础研究。植物来源的蛋白质因其天然丰富和对环境的影响小而成为理想的来源。在此,燕麦球蛋白(燕麦植物的主要蛋白质)被用于生产高质量的淀粉样蛋白纤维和基于其的功能材料。这些纤维显示出丰富的多链带状多态性和具有不可逆和可逆途径的纤维化过程。此外,作者还制造了燕麦淀粉样蛋白气凝胶、薄膜和膜,可用于水净化、传感器和图案化电极。展示了燕麦淀粉样蛋白相对于其他蛋白质来源的可持续性足迹,有望为先进材料和技术提供一个环境高效的平台。
第一单元:研究方法简介:研究的定义、研究人员的素质、研究问题的组成部分、科学研究中的各个步骤:假设、研究目的、研究设计、文献检索实验设计和规划、时间安排:目的和目标、预期结果、要采用的方法、为实现目的和目标而进行的实验规划、研究工作可重复性的重要性。数据收集:数据来源:原始数据、次要数据;实验的抽样优点和缺点、程序和控制观察、抽样误差 - I 型错误 - II 型错误。数据统计分析和拟合:统计学简介 - 概率、均值估计和属性;卡方检验、属性关联 -t 检验 - 标准差 - 变异系数。相关和回归分析。统计软件包介绍,绘制图表使用计算机进行研究:使用网络进行文献调查,处理搜索引擎准备演示文稿:i)研究论文:使用文字处理软件 MS
高质量的科学研究需要全面了解什么是、如何做和为什么,打破界限,超越现有知识的舒适区。真正的科学研究文化在学生的不同阶段被灌输,从高中开始,在本科和硕士学习期间成熟,最终在博士学习期间确定方向。就像科学研究不遵循生物学、化学、物理学、数学和/或不同工程分支等主要学科之间的任何预定义界限一样,学生的思维也应该遵循类似的模式。充满活力的学术思想永远不应该有偏见,要做到这一点,学生需要受到发人深省的教师的培养,最重要的是多样化的课程。其中一种课程
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
摘要 - 植物材料对行星科学,建筑和制造业中许多机器人任务的关键兴趣。但是,颗粒材料的动力学很复杂,并且通常在计算上非常昂贵。我们提出了一组方法和一个用于快速模拟图形处理单元(GPU)的颗粒材料的系统,并表明该模拟足够快,可以通过增强学习算法进行基础培训,目前需要许多动力学样本才能实现可接受的性能。我们的方法模型使用隐式时间播放方法进行多体刚性接触的颗粒材料动力学,以及算法技术,用于在粒子对和任意形成的刚体之间和任意形状的刚体之间的有效并行碰撞检测,以及用于最小化Warp Divergence的编程技术,以最大程度地构建单层构造(构建多项)。我们在针对机器人任务的几个环境上展示了我们的仿真系统,并将模拟器作为开源工具发布。