功能分级的材料(FGM)是新一代的工程材料,其中微结构细节通过增强阶段的非均匀分布在空间上变化,请参见顶部图。工程师通过使用具有不同属性,大小和形状的增强件以及以连续的方式互换增强和矩阵阶段的作用(参考1)。结果是一个微观结构,该微观结构在宏观或连续尺度上产生连续或离散变化的热和机械性能。这一新的工程材料的微观结构的概念标志着材料科学和材料领域机制中革命的开始,因为它首次允许一个人将材料和结构上的考虑因素完全整合到结构组件的最终设计中。功能分级的材料是涉及严重热梯度的应用的理想候选物,从高级飞机中的热结构和
(或溶剂混合物),可进一步加工成可印刷或可涂覆的油墨。这些悬浮液的行为通常用 Derjaguin-Landau-Verwey-Overbeek (DLVO) 理论描述,[3] 这意味着悬浮液中纳米片的浓度有一个上限,超过该上限悬浮液就会变得不稳定。[4] 尽管如此,高浓度悬浮液(油墨)对于形成渗透粒子网络是必要的,[5] 并且满足高通量印刷和涂层方法的流变学要求(例如高粘度)。无论浓度如何,悬浮液在热力学上都是不稳定的,并且粒子倾向于通过聚集来降低其表面能。[6] 为了降低沉降速度,必须最小化溶剂和 2D 材料之间的表面能差异,[3] 这使得分散介质的选择限制为少数溶剂,而这些溶剂的溶解度范围可能不适合后续加工。在传统的油墨配方中,为了解决上述问题,将二维材料悬浮液加工成可印刷或可涂覆的油墨,需要使用表面活性剂、粘合剂和流变改性剂等添加剂。[7–10] 例如,需要高浓度的聚合物粘合剂(如70 mg mL-1乙酸丁酸纤维素)来将石墨烯油墨的粘度提高到适合丝网印刷的水平。[11] 由于典型的添加剂会对电子性能产生不利影响(例如,
淀粉样蛋白功能材料由淀粉样蛋白纤维结构块制成,这些结构块由淀粉样蛋白天然蛋白或合成肽体外生产,具有多种功能,包括环境科学和生物医学、纳米技术和生物材料。然而,淀粉样蛋白的可持续和可负担来源仍然是大规模应用的瓶颈,迄今为止,人们的兴趣仍然主要局限于基础研究。植物来源的蛋白质因其天然丰富和对环境的影响小而成为理想的来源。在此,燕麦球蛋白(燕麦植物的主要蛋白质)被用于生产高质量的淀粉样蛋白纤维和基于其的功能材料。这些纤维显示出丰富的多链带状多态性和具有不可逆和可逆途径的纤维化过程。此外,作者还制造了燕麦淀粉样蛋白气凝胶、薄膜和膜,可用于水净化、传感器和图案化电极。展示了燕麦淀粉样蛋白相对于其他蛋白质来源的可持续性足迹,有望为先进材料和技术提供一个环境高效的平台。
复合材料是指由两种或多种可见结合且不会相互溶解的成分组成的材料组,具有所用材料的所需特性(Kaw 2014)。Ersoy(2001)将复合材料定义为由至少两种不同材料组合而成的用于特定用途的材料组。它通常由复合材料、低强度树脂或基质和少量增强元素组成。复合材料的成分在宏观层面上以保持其极限的方式组合在一起。当检查复合材料时,可以看到成分是经过选择的,并且它们处于可区分的水平。尽管这些材料表现出均匀的特性,但它们实际上具有异质结构。在这种情况下,尽管在分子和原子水平上组合的材料看起来是均匀的,但它们不属于复合材料类(Şahin 2000)。
●大学学位,学士学位,在社会科学或同等学历上。教育,社会科学,商业/供应链管理或同等优先的硕士学位; ●在教育领域内的发展援助活动中,至少有10年的连续经过验证的工作经验,最好在书籍供应链管理/能力建设方面具有捐助者资助的项目,包括至少4年的管理经验; ●展示了图书供应链中的技术专业知识; ●具有人际交往和书面沟通技巧的证据,具有与主要政府,私营部门和发展伙伴参与者建立积极关系的能力。●战略规划经验和财务管理监督至关重要; ●对卢旺达教育系统的扎实知识,尤其是影响教学材料供应链的问题; ●展示了熟悉的计划管理和美国国际开发署报告机制; ●在管理USAID资助的计划以及对美国国际开发署的财务管理系统和报告要求方面的知识方面的事先经验; ●能够管理国际和国家分包商的财团; ●展示了发展中国家能力建设和专业发展的经验和知识; ●有效的口头和书面沟通技巧,以制作正式和非正式的演讲,并用英语撰写专业和分析报告和计划文件; ●高度期望的Kinyarwanda,法语和/或斯瓦希里语的熟练程度。
随着可再生能源生产越来越受关注,硅基太阳能光伏技术作为一种潜在的可持续能源生产方法正受到越来越多的关注。然而,硅基太阳能电池制造是一种非常耗能且复杂的技术,这使得太阳能电池组件成本高昂。钙钛矿在硅技术上占据上风,因为它采用溶液处理方法,效率可与硅电池相媲美,同时使用成本效益高且简便的合成和制造技术。钙钛矿的环境稳定性是商业化的最大障碍,DST-IIT 坎普尔综合清洁能源材料加速平台材料中心将制定新战略,以提高钙钛矿太阳能电池商业化的稳定性和性能。印度尤其具有将太阳能技术与智能能源管理系统相结合的巨大潜力,这将减少传统能源的使用。因此,该中心的目标之一是设计和开发用于太阳能热系统的性能材料,以及用于节能建筑的隔热砖和智能窗户。这种具有成本效益且适销对路的建筑集成技术可以促进印度工业进入相应市场,符合印度中央政府的“印度制造”、“印度创新”和“自力更生印度”倡议。
a Institute of Power Engineering, Universiti Tenaga Nasional, Jalan Ikram UNITEN, 43000, Kajang, Selangor, Malaysia b Department of Mechanical Engineering, Faculty of Engineering, Ajayi Crowther University, PMB 1066, Oyo, Oyo State, Nigeria c Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia d Advance Engineering Materials and Composites Research Center, (AEMC), Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia e Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan Ikram UNITEN, 43000, Kajang, Selangor, Malaysia f Department of Sugar Engineering, Nigeria Sugar Institute, Km.18, Ilorin-Kabba Highway, Ilorin, Nigeria g Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
Linguaskill 通用阅读和听力初级测试 1 Linguaskill 通用阅读和听力初级测试 2 Linguaskill 通用阅读和听力中级测试 1 Linguaskill 通用阅读和听力中级测试 2 Linguaskill 通用阅读和听力高级测试 1 Linguaskill 通用阅读和听力高级测试 2
