在过去的二十年中,理论和建模已成为应用化学以及分析化学、合成化学和其他化学领域的主要研究课题之一。这是由于方法论、数值方法以及计算机软件和硬件的重大改进而成为可能的。许多实验研究开始包括计算建模。计算机模拟在现代化学中的作用不可低估,有效的建模和模拟在实际应用中起着至关重要的作用,因为它可以提供对实验的见解并帮助优化系统。具体而言,模拟越来越多地被用来用计算代替危险且昂贵的实验。同时,现代材料科学和生物学实验研究的令人瞩目的进步要求进一步发展和不断扩展当今计算化学方法的适用性和准确性。对大型生物分子、纳米粒子和界面进行快速而准确的定性和定量建模成为研究的主要焦点,这需要大量的计算工作,而且在目前的技术水平下并不总是能够实现。大多数计算化学问题都是关于求解分子中电子的薛定谔方程或经典粒子系统的牛顿运动方程。因此,数学应该在新的发展中发挥核心作用。本次研讨会的主要目的是根据顶尖科学家提供的经验分析计算化学的当前需求和期望,并与方法和计算软件开发人员进行讨论。以下部分以研讨会会议为名,包括初始演讲中提出的主题以及圆桌讨论和人际谈话中提出的主题。
环境与生物物种相关,无论大小如何。不管知道环境变化会对所有物种的生活方式产生不利影响,人类都会通过从人工来源中散发出有害的气体来污染环境。人类正在迅速发明并发现出于各种目的的新技术。但是,大多数技术会散发有害和有毒的温室气体(GHG),这些气体(GHG)限制了地球温度并引起全球变暖。因此,由于温室气体的快速排放和环境中的浓度,全球变暖持续了,其影响会改变气候系统并损害沿海和海洋生态系统。此外,快速的全球变暖和温室气体排放量通过工业区域周围的酸雨引起海水和森林生态系统的酸化,损害了海洋生态系统。结果,沿海和海洋生态系统中对温度敏感的物种通常日常消失。另一方面,尽管知道森林地区的重要性,但我们不加选择地砍伐树木并破坏了森林地区的各种目的。因此,环境中纯氧的缺乏正在显着增加,我们周围的大气变得更加温暖和污染。根据环境科学家的说法,如果情况继续进行,则数千种对温度敏感的物种可能灭绝,导致到当前世纪末的生态失衡。本书由十个章节组成,如下所示:本书的主要目的是通过减轻潜在的影响来研究沿海和海洋生态系统的快速全球变暖和温室气体排放对沿海和海洋生态系统的潜在影响。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
I.引言白喉是由核核细菌二甲菌引起的严重感染,可导致毒素导致严重疾病。细菌主要是通过咳嗽或打喷嚏的呼吸液滴传播的,但也可以通过与感染的疮或溃疡接触而传播。那些处于较高风险的人包括生活在同一家庭中的人或经常与受感染者密切接触的人(CDC,2022)。症状通常在感染后2-5天出现,并且严重程度有所不同,包括喉咙痛,嘶哑,厚厚的灰色膜覆盖喉咙和扁桃体,发烧,发冷和疲劳。如果未经治疗,白喉可能会引起并发症,例如呼吸道问题,心脏损伤和神经损伤(Mayo,2023年)。自2022年12月以来,NCDC报告了各个州的多次白喉爆发。到2023年6月30日,有798个确认的案件已从八个州的33个地方政府地区(LGA)报告,其中卡诺(Kano)为多数(782例)。这些病例主要影响2-14岁的儿童,导致确认病例80例死亡(NCDC,2023年)。从2023年6月至2023年8月,尼日利亚的白喉病例显着增加,有5898例可疑病例报告了11个州的59个LGA。仅第34周就看到了五个州的20个LGA的234例可疑病例,其中一个实验室确认的病例(WHO,2023年)。
它。因此,如果像mtDNA这样的圆形DNA具有m识别(限制)位点,则该酶在消化后将其分散成M段。限制位点的数量和位置随核苷酸序列而变化。相比,两个DNA序列的相似性越高,裂解模式越接近。因此,可以通过比较限制位点的位置来估计两个同源DNA之间的核苷酸取代的数量。同样,可以从两个或分类的DNA片段的比例中估算核苷酸取代的数量。Upholt(8)研究了这两个问题,但他的锻炼并不一般,似乎涉及一些错误。fur-hoverore,upholt不关注种群中DNA序列的异质性明显高度(5)。当研究紧密相关的物种之间的遗传差异时,有必要消除这种异质性的作用。本文的目的是开发一个更严格的DNA遗传差异数学模型,并提出了一种统计方法,用于分析限制酶研究的数据。在前四个部分中,我们要么假设人群中没有多态性,要么仅考虑一对生物(个体)之间的遗传差异。在第五部分中将删除无多态性的假设。
o 获得持续学习和知识更新的基本知识工具 o 学生将培养不断更新物理研究中的数学技术和技能的态度。 教学大纲 内容知识 度量空间。定义。例子。开集、闭集、邻域。拓扑空间。连续映射。稠密集、可分空间。收敛和柯西序列。完备性。例子。度量空间的完备性。巴拿赫空间。向量空间。范数空间。完备性和巴拿赫空间。例子:有限维空间、序列空间、函数空间。有界线性算子。连续性和有界性。BLT 定理。连续线性泛函和对偶空间。有界线性算子的巴拿赫空间。例子。测度论简介。勒贝格积分。Sigma 代数和 Borel 测度。可测函数。支配和单调收敛。富比尼定理。例子:绝对连续测度、狄拉克测度、康托测度。勒贝格分解定理。希尔伯特空间。内积。欧几里得空间和希尔伯特空间。正交性、勾股定理。贝塞尔不等式和柯西-施瓦茨不等式。三角不等式。平行四边形定律和极化恒等式。例子。直和。投影定理。Riesz-Fréchet 引理。正交系统和傅里叶系数。正交基和 Parseval 关系。Gram-Schmidt 正交化程序。与 l^2 同构。张量积和积基。希尔伯特空间上的线性算子。有界算子的 C ∗ -代数。正规、自伴、酉和投影算子。Baire 范畴定理。一致有界性原理。一致、强和弱收敛。一些量子力学。无界算子。伴生。对称和自伴算子。例子:乘法和导数算子。本质自伴算子。自伴性和本质自伴性的基本标准。图、闭包
运用数学游戏应用进行数字化游戏化学习对四年级学生计算能力的影响 刘濝濢 -Bei LIU a* , Alex Wing Cheung TSE b* 香港大学教育学院,香港 a* u3598295@connect.hku.hk; b* awctse@hku.hk 摘要:计算能力是小学数学学习中必不可少的素质,事实证明,通过游戏化应用进行学习可以提高学生的数学学习成绩,从而有利于发展他们的计算能力。计算能力是数学核心技能之一,可以通过不断的计算练习来提高。然而,目前关于在小学使用运用数学游戏应用进行数字化游戏化学习 (DGBL) 对发展学生计算能力的影响的研究还很少。因此,本项准实验研究共有78名学生参与,旨在评估通过iPad进行DGBL与数学游戏应用“口算英雄”对中国大陆一所主流学校四年级学生计算能力的可能影响。实验班将数学游戏应用融入为期四周的课堂活动中,实验组和对照组均采用标准化计算能力测试:Abilita diCalcoloz计算能力-记忆与训练第6-11组(Cornoldi等,2002)进行前测和后测。采用方差分析的数据分析结果显示,在数学课堂上使用iPad上的数学游戏应用学习时,学生的计算能力存在显著差异,四年级实验组(n=40)与对照组(n=38)的整体计算能力存在显著差异。换句话说,我们发现,在使用数学游戏应用进行计算练习后,学生更有可能获得更好的计算能力,尤其体现在计算速度更快、错误率更低方面。然而,在数值知识方面没有显著差异,使用这种数学游戏应用程序学习可能不会导致获得更多的数学知识。这项研究为小学数学教育者和教师提供了一个现实的视角来了解使用数学游戏应用程序学习的潜力:它可以成为提高四年级学生计算能力的有效工具。该项目的第二阶段是探索研究结果背后的原因,揭示使用数学游戏应用程序进行 DGBL 的可能因素,这些因素可能会促进计算能力的某些方面。提出了将 DGBL 融入小学数学课堂的进一步建议。关键词:基于数字游戏的学习、计算能力、数学游戏 1。引言:学生的计算能力是指理解数字之间规律和相对量,并以更灵活的方式进行数字运算(加、减、乘、除)的能力(Feigenson 等,2004;Tall 和 Dehaene,1998)。计算能力对于小学阶段的数学成绩至关重要(Cowan 等,2011)。与不同领先国家的小学数学课程类似,根据中国大陆最新的课程标准,四年级学生必须掌握四种运算(加、减、乘、除),并且需要不断练习计算能力以找到更简单的解决方案(中华人民共和国教育部,2022)。学生的表现和
数学常数(例如π,E和φ)长期以来一直被认为是天然系统中几何,生长和自组织的基础。然而,常规数学将这些数字视为独立领域的新兴特性(几何,微积分和数字理论),而不是统一框架内的内在共振状态。动态新兴系统(代码)的手性提出,这些常数不是任意的,而是在主要驱动的共振字段中作为必要的相锁定结构出现。
参加数学课程可以参加教程计划(http://th.gmu.edu/tutorial-registration.php),或者他们可以自己学习和重新进行测试。未完成教程计划(http://math.gmu.edu/tutorial-registration.php)或未在数学安置测试(http://math.gmu.edu/placement_test.php)上获得必要的分数的学生将无法参加该类别。取决于他们的考试成绩,不列入数学113分析几何的学生(Mason Core)(http://catalog.gmu.gmu.edu/mason-core/)将建议使用数学105使用Algebra/trigbra/trigrignormetry,一部分或一部分,一部分或一部分,一部分,或一部分,一部分时间,或者在一部分中进行数学105次数的数学。
数学优化和机器学习可以为未来的指导提供复杂的决策和预测行动。爱德华·罗斯伯格(Edward Rothberg)的《福布斯》(Forbes)的文章重点介绍了这些技术之间的四个关键差异:分析类型,应用程序,适应性和成熟度。数学优化通过考虑多个级别的决策来确保系统性运营绩效,优化盈利能力,同时消耗更少的情况,从而改善了问题的解决。当机器学习在复杂的业务问题上达到限制时,数学优化将取代获得最佳结果。这些高级分析工具包括描述性(对过去或时事的见解),预测性(预测未来事件)和规定性(决定达到业务目标的决定)。在基于历史数据的基于历史数据方面擅长预测机器,但使用最新数据,数学模型和基于算法的求解器,数学优化为挑战业务问题生成了解决方案。机器学习的输出可以指导决策,但无法处理复杂的,相互联系的决策集,例如数学优化可以。机器学习用于各种应用程序,包括图像识别,产品建议和自动驾驶汽车,而数学优化解决了整个企业频谱的大规模业务问题。数学优化和机器学习对我们世界的各个行业和各个方面产生了深远的影响,两种技术在多个领域都被广泛采用。在本节中,共有18篇已发表的论文可用于详细信息。随着企业在以不断变化和中断为特征的环境中运作,数学优化应用程序可以轻松地适应变化的条件,从而提供必要的可见性和敏捷性,以有效地响应中断。相比之下,机器学习应用程序通常在“模型漂移”方面困难,从而导致随着时间的推移降低预测能力。尽管数学优化模型的鲁棒性需要在建筑物上进行更多的前期投资,但它在整个行业中广泛应用了良好的记录。另一方面,机器学习已经达到了普遍存在的状态,但是由于无法满足其能力,因此其膨胀期望的高峰可能会导致幻灭。但是,这两种技术都对世界都有持久和不断扩大的影响,企业找到了创新的方法来利用这些AI工具来应对其最重要的业务挑战。这本数学特刊探讨了优化,机器学习和数学建模的收敛性。从图像识别到自动驾驶汽车的一系列应用程序受益于这些相互联系的字段。鼓励研究人员提交专注于解决复杂问题的新分析或数值方法的论文。潜在的主题包括机器学习基础,新算法和体系结构,数据分析以及在各种科学中的应用。手稿可以在www.mdpi.com上在线提交,并且接受的论文将连续出版在日记中,并具有单盲的同行评审过程。客座编辑Andrey Gorshenin教授,Mikhail Posypkin博士教授以及Vladimir Titarev博士教授邀请研究文章,评论文章或简短的沟通,以展示有关数学建模,优化,优化和机器学习的无与伦比的方法。提交的论文应符合适当的格式,并利用明确的英语写作来进行国际理解。作者可以选择MDPI的专业编辑服务,以在发布之前或在修订过程中完善其工作。本期刊所包含的研究领域包括数学建模,优化技术,控制理论,高性能计算,随机过程,数值分析,计算流体动力学,机器学习和数据分析。为了促进轻松的浏览,根据相关主题组织了论文,使学者可以更轻松地在广泛的范围期刊上行驶。此分类还提高了特殊问题中文章的可见性,这些问题旨在突出特定的研究主题。通过提高可发现性和引文率,这些问题对科学研究的影响产生了重大贡献。创建特殊问题不仅有助于作者之间的联系,而且鼓励科学界的合作努力。此外,这些问题通常通过社交媒体平台获得外部晋升,从而扩大了其覆盖范围和可见度。此外,可以将10篇文章的特殊问题汇编成专用的电子书,以确保快速传播研究结果。有关MDPI关于特殊问题的政策的更多信息,请参阅提供的链接。