生物医学科学系管理 Christy Bridges,博士 临时主席和组织学教授 办公室:东 48 电话:478-301-2086 电子邮件:bridges_cc@mercer.edu 理学硕士项目管理和教职员工 James Drummond,博士 临床前科学硕士项目主任 微生物学副教授 课程主任,BMS 623 & 611 & 622 办公室:西 86 电话:478-301-4044 电子邮件:drummond_j@mercer.edu Pamela Noble 行政协调员 – MS 项目 办公室:东 49 电话:478-301-4047 电子邮件:noble_pg@mercer.edu 待定 生理学副教授 课程主任,BMS 620 办公室:待定 电话:待定 电子邮件:待定 Brad Lian 博士副教授/临时主席 社区医学 课程主任,BMS 624 办公室:2031 电话:478-301-4097 电邮:lian_be@mercer.edu Angabin Matin,博士 生物化学副教授 课程主任,BMS 612 办公室:东 51 电话:478-301-5128 电邮:matin_a@mercer.edu Manish Mishra,博士 生物化学副教授 课程主任,BMS 610 办公室:东 55 电话:478-301-2513 电邮:mishra_m@mercer.edu
转座元素(TES)是寄生虫DNA序列,能够沿所有基因组的染色体移动和繁殖。可以通过靶向沉默表观遗传标记来控制它们,这可能会影响包括基因在内的相邻序列的Chro Matin结构。在这项研究中,我们使用了来自几个果蝇Melanogaster的卵巢样品和果蝇Simulans野生型菌株产生的转录组和表观基因组高吞吐量数据,以精细量化Te插入对基因RNA水平和组蛋白标记的影响(H3K9ME3和H3K9ME3和H3K4ME3)。我们的结果揭示了与梅拉·诺加斯特(D. Mela Nogaster)相比,TES对D. simulans中直源基因的表观遗传作用更强。同时,我们发现了D. mel Anogaster基因组中TE对基因H3K9me3的差异的较大贡献,这证明了Te数字周围的Te数与D. melanogaster中这种染色质标记的水平的更强相关性。总体而言,这项工作有助于理解TE在基因组中的物种特异性影响。它为TE提供的可观自然变异性提供了新的启示,这可能与适应性和进化潜力的对比有关。
“我在一个有可通行道路的村庄里度过了三个月的假期。那里的每个人都有相关性。早上,每个人都会去垃圾场看看邻居,并祝他们度过美好的一天。在我们的社区里,情况是不是有所不同呢?人们几乎不认识彼此,也很少打招呼。在博罗姆,没有一个年轻人是闲着的。每个人都以自己的方式为家庭生活做出贡献。有时我们带回来的是鱼,有时是小猎物或毛毛虫。但是在这里,您需要在玩耍或在电视机前待一段时间后吃饭。 »
小细胞肺癌 (SCLC) 是一种恶性神经内分泌肿瘤,预后较差。本文重点研究神经内分泌 SCLC 亚型 SCLC-A 和 SCLC-N,其转录依赖性由 ASCL 1 和 NEUROD 1 转录因子驱动,这些转录因子靶向 E-box 基序以激活高达 40% 的总基因,根据 ATAC 和 H 3 K 27 Ac 标记,这些基因的启动子保持在稳定开放的染色质环境中。海洋因子 lurbinectedin 利用了这一优势,它优先靶向位于转录起始位点下游的 CpG 岛,从而阻止 RNAPII 延长并促进其降解。这消除了 ASCL 1 和 NEUROD 1 及其依赖基因(如 BCL 2 、 INSM 1 、 MYC 和 AURKA )的表达,这些基因负责相关的 SCLC 致瘤特性(如抑制细胞凋亡和细胞存活)以及其部分神经内分泌特征。总之,我们展示了这些细胞的转录成瘾如何成为它们的致命弱点,以及 lurbinectedin 如何有效地利用这一点作为一种新的 SCLC 治疗手段。
基因组信息编码在长链 DNA 上,DNA 折叠成染色质并储存在微小的细胞核中。核染色质是一种带负电荷的聚合物,由 DNA、组蛋白和各种非组蛋白组成。由于其高电荷性质,染色质结构随周围环境(例如阳离子、分子拥挤等)而变化很大。过去 10 年,已经开发出捕获活细胞中染色质的新技术。我们对染色质组织的看法已从规则和静态转变为更加多变和动态。染色质形成许多紧凑的动态区域,它们充当高等真核细胞中基因组的功能单位,局部呈现液体状。通过改变 DNA 的可及性,这些区域可以控制各种功能。基于来自多功能基因组学和先进成像研究的新证据,我们讨论了拥挤的核环境中染色质的物理性质及其调控方式。
在有丝分裂过程中,凝缩蛋白 I 和 II 复合物将染色质压缩成染色体。染色质驱动蛋白 KIF4A 的缺失会导致凝缩蛋白 I 与染色体的结合减少,但这种表型背后的分子机制尚不清楚。在本研究中,我们发现 KIF4A 通过位于其 C 末端尾部的保守无序短线性基序 (SLiM) 直接与人类凝缩蛋白 I HAWK 亚基 NCAPG 结合。 KIF4A 与 NCAPH N 端和 NCAPD2 C 端的 SLiM 竞争 NCAPG 与重叠位点的结合,后者介导凝聚素 I 中的两种自抑制相互作用。KIF4A SLiM 肽本身就足以刺激凝聚素 I 的 ATPase 和 DNA 环挤压活性。我们在已知的酵母凝聚素相互作用蛋白 Sgo1 和 Lrs4 中发现了类似的 SLiM,它们与酵母凝聚素亚基 Ycg1(与 NCAPG 相当的 HAWK)结合。我们的研究结果以及之前对凝聚素 II 和黏连素的研究证明,SLiM 与 NCAPG 相当的 HAWK 亚基结合是 SMC 复合物中保守的调节机制。
姓名 公司 Aaron Vander Vorst Enel Green Power North America Aasawari Pawar Ørsted Aboutaleb Haddadi EPRI Adam Bowers sPower Services, LLC Adam Manty American Transmission Company, LLC Adam Sparacino Mitsubishi Electric Power Products, Inc. Afshin Matin Canada.ca Al McBride ISO New England Albert Peters Arizona Public Service Co. Alex Graffeo City of Tallahassee Alex Pollock American Superconductor Corporation Alexander Shattuck Vestas Ali Hooshyar Electrical & Computer Engineering: ECE at U of T Alicia Allen Sargent & Lundy Allen Schriver NextEra Energy Inc. Allen Zhang Southern Company Amir Abiri Jahromi University of Leeds Amir Mohammednur Southern California Edison Company Anderson Hoke National Renewable Energy Laboratory Andrew Arana Florida Power & Light Co. Andrew Balascak NATF Andrew Isaacs Electranix Corporation Andrew Larkins Sygensys Anish Gaikwad Electric Power Research Institute Anisha Fernandes PJM Interconnection, LLC Anthony Doering ITC Holdings Anton Salib Dominion Energy Arash Sarmadi Enel Group Arun Gandhi 纽约独立系统运营商 Awais Ghayas PJM Ayesha Bari Entergy Barry Ahern 国家电网公司 Ben Hutchins PSC Specialists Group, Inc. Benjamin Rogowitz Swinerton 可再生能源 Bernardo Benigni Florida Power and Light / NextEra Energy
非霍奇金淋巴瘤(NHL)是在淋巴组织中产生的一组血液癌,通常会影响人类和狗。蛋白精氨酸甲基转移酶5(PRMT5)是一种催化精氨酸残基的对称二甲基化的酶,在人类固体和血液系统恶性肿瘤中均过表达且失调。在人淋巴瘤中,PRMT5是已知的恶性转化和肿瘤发生的驱动因素,但是尚未探索PRMT5在犬淋巴瘤中的表达和作用。探索犬淋巴瘤是与人淋巴瘤的有用比较,同时将PRMT5作为两者中的有理治疗靶标的,我们表征了犬淋巴瘤组织,原发性淋巴样生物的PRMT5的表达模式,以及犬淋巴瘤衍生的细胞系。PRMT5的抑制导致了抑制和诱导凋亡,同时选择性降低了对称二甲基精氨酸(SDMA)(SDMA)和组蛋白H4精氨酸3对称二甲基化的全局标记。,我们通过途径富集分析进行了ATAC测序和基因表达微阵列,以表征全基因组可及性的全基因组变化和PRMT5抑制后犬淋巴瘤细胞系的全转录组变化。这项工作将PRMT5验证为犬淋巴瘤的有前途的治疗靶标,并支持继续使用自发发生的犬淋巴瘤模型,用于临床前PRMT5抑制剂治疗人类NHL。
旁系同源物 CUL 4 A 和 CUL 4 B 组装 cullin-RING E 3 泛素连接酶 (CRL) 复合物,调节多种染色质相关的细胞功能。尽管它们结构相似,但我们发现 CUL 4 B 独特的 N 端延伸在有丝分裂期间被大量磷酸化,而磷酸化模式在导致 X 连锁智力残疾 (XLID) 的 CUL 4 BP 50 L 突变中受到干扰。表型表征和突变分析表明,CUL 4 B 磷酸化是有效进行有丝分裂、控制纺锤体定位和皮质张力所必需的。虽然 CUL 4 B 磷酸化触发染色质排斥,但它促进与肌动蛋白调节剂和两个以前未被认识的 CUL 4 B 特异性底物受体 (DCAF) LIS 1 和 WDR 1 的结合。事实上,共免疫沉淀实验和生化分析表明 LIS 1 和 WDR 1 与 DDB 1 相互作用,并且 CUL 4 B 的磷酸化 N 端结构域增强了它们的结合。最后,人类前脑类器官模型表明 CUL 4 B 是形成与前脑分化开始相关的稳定脑室结构所必需的。总之,我们的研究发现了以前未被发现的与有丝分裂和大脑发育相关的 DCAF,它们通过磷酸化依赖机制特异性结合 CUL 4 B,但不结合 CUL 4 BP 50 L 患者突变体。