版权所有©2024由Stemcell Technologies Inc.保留的所有权利,包括图形和图像。Stemcell Technologies&Design,Stemcell Shield设计,帮助科学家和Stemdiff是加拿大Stemcell Technologies Inc. Corning和Matrigel的商标。MTESR和TESR是WARF的商标。Gibco是Thermo Fisher Scientific的商标。所有其他商标都是其各自持有人的财产。尽管Stemcell已做出了所有合理的努力,以确保Stemcell及其供应商提供的信息是正确的,但对此类信息的准确性或完整性没有任何保证或陈述。
hiPSC 培养:来自健康受试者的 hiPSC 系来自再生医学计划,AD hiPSC 来自 Coriell。通过 Sanger 测序和液滴数字 PCR 确认存在家族性突变。在创建主细胞库和工作细胞库之前,对所有细胞进行了活力、无菌性、细胞系身份、核型和多能性标志物表达测试。hiPSC 在基质胶上培养,如 StemCell Technologies(mTeSRTM1 手册中的人类多能干细胞维护)所述,使用 mTeSR1 作为细胞培养基和温和的解离剂进行传代。如果观察到自发分化,则使用 ReLeaSer(StemCell Technologies)来维持未分化培养。 NGN2 诱导的稳定 iPSC 的生成:健康对照和 AD 供体的 hiPSC 被编码 NGN2 的慢病毒转导,并在预定浓度的抗生素选择下放置 10 天,以生成可诱导表达 NGN2 的 hiPSC 多克隆稳定池。NGN2 稳定的 iPSC 向皮质神经元的分化:将 hiPSC 重新接种为单细胞,并通过添加强力霉素诱导 NGN2 的表达,以将 iPSC 分化为神经元前体 (NPC)。单次接种和诱导 NGN2 4 天后,将 NPC 用胰蛋白酶消化并重新接种到 PLO/matrigel 包被的 96 孔板中,密度为 30,000 个细胞/cm 2 。在 NPC 接种 2 天后,用预定的最佳浓度的 Ara-C 处理培养物以防止星形胶质细胞的出现。
目标:本研究对三维(3D)培养方法在富集和分离乳腺癌干细胞(BCSC)中的功效进行了比较分析。该研究比较了在母质和悬浮液中生长的多细胞球体与常用的二维(2D)单层培养方法。方法:实验涉及9天3D多细胞球体培养物,然后使用两种乳腺癌细胞系进行24小时单层培养,即MCF7和MDA-MB-231。为了评估BCSC,该研究评估了包括CD44/CD24,Vimentin和Aldh1在内的各种表面标记的表达,以及多能干细胞基因(如SOX2,OCT4,KLF4和Nanog)。另外,测量了阿霉素的耐药性和从每种方法中得出的单个细胞的能力,以在无血清悬浮培养中形成球体。结果:研究结果表明,在悬浮液中生长的3D培养多细胞球体显示出干细胞标记物和阿霉素耐药性的显着增加。此外,这些球体在无血清培养基中形成具有超过50 µm的单细胞球体具有更高的能力。结论:总的来说,与2D单层和3D单基质甲基甲基甲基甲基甲基甲基甲基酯和3D Matrigel Meths相比,这种3D培养方法在悬浮液中具有增强的BCSC,具有增强的自我更新和增殖能力。因此,这种方法可以使用任何可用的BCSC隔离方法从细胞系中隔离BCSC的关键初步步骤。关键词:乳腺癌,抗癌性,癌症干细胞,阿霉素,3D培养
版权所有©2021由Stemcell Technologies Inc.保留的所有权利,包括图形和图像。Stemcell Technologies&Design,Stemcell Shield设计,科学家,帮助科学家,STEMDIFF和Celladhere是加拿大Stemcell Technologies Inc. Celladhere™层粘连蛋白521的商标。康宁和Matrigel是Corning Incorporated的注册商标。mtesr和Tesr是WARF的商标。P450-GLO是Promega Corporation的商标。Parafilm是Bemis Company,Inc。的注册商标。所有其他商标都是其各自持有人的财产。尽管Stemcell已做出了所有合理的努力,以确保Stemcell及其供应商提供的信息是正确的,但对此类信息的准确性或完整性没有任何保证或陈述。
图1。细胞迁移和入侵测定。使用RGO-PEI UT和RGO-PEI MS对GL261细胞系对细胞迁移和侵袭的抑制作用。在与RGO-PEI UT,RGO-PEI MS孵育之前,将细胞粘附在Matrigel上,或者在24小时内没有任何RGO-PEI。核用图像中的蓝色染色的DAPI染色。数据作为平均迁移和入侵细胞数量比各自对照的比率表示。该值表示平均值±SEM,来自两个独立实验的总计n = 4,每个实验都具有重复的测量。*** p <0.0001,**** p <0.00001。图像代表了每种条件(比例尺:500 µm)。
细胞间粘附丧失,导致紧密连接溶解、顶端-基底极性破坏和细胞骨架结构重组;这些影响与侵袭性或转移表型有关 (Vu and Datta, 2017)。因此,我们分析了 stPEPC 诱导的有丝分裂细胞死亡是否与 CRC 转移进展紊乱有关。我们的数据显示,与 24 小时后用载体处理的 CRC 细胞相比,用 stPEPC 治疗可增加上皮标志物的表达水平,包括 E-cadherin 和 occludin (图 7A),并减少迁移 (图 7B)。此外,与用载体处理的 CRC 细胞相比,stPEPC 显着降低了 HT29 和 HCT116 细胞通过 Matrigel 包被的 Transwell 聚碳酸酯滤膜的侵袭能力
图 1. 人类 iPSC 发育成脑类器官的代表性图像。(A) 健康个体的人类诱导多能干细胞集落。(B) 接种在圆底板中的 DIV2 胚状体。(C) DIV7 胚状体,神经外胚层的形成表现为胚状体周围的光晕。(D) DIV10 胚状体嵌入 Matrigel 中,支持神经上皮的形成。(E) DIV13 脑类器官,神经花结的存在代表干细胞分化为神经祖细胞。(F) DIV34 脑类器官,其中类器官的直径 >1,000 µm。(G) DIV35 类器官中神经元前体 SOX2(红色)和成熟神经元 NeuN(白色)的免疫组织化学染色。
•样本收集:根据赫尔辛基宣布和机构审查委员会(IRB)批准,收集新鲜的组织样本。•器官推导条件:基于器官的血清培养培养基,低O 2孵育,超低附着板(ULA)和Matrigel底物,具体取决于肿瘤类型。•功能性药物筛查:在384个井板中播种器官,在37 o C下孵育6天•6天•读数:通过ATP(细胞滴度发光)的生存能力•分析(Sengine App):使用15至1的新颖分数(SPM)对响应的内部分析进行了分析,并在响应中进行了分析,并分析了绝对分析和分析的响应和分析。pDTO被归类为敏感与抗性,对响应进行了排名:异常/良好/中等/低。
•样本收集:根据赫尔辛基宣布和机构审查委员会(IRB)批准,收集新鲜的组织样本。•器官推导条件:基于器官的血清培养培养基,低O 2孵育,超低附着板(ULA)和Matrigel底物,具体取决于肿瘤类型。•功能性药物筛查:在384个井板中播种器官,在37 o C下孵育6天•6天•读数:通过ATP(细胞滴度发光)的生存能力•分析(Sengine App):使用15至1的新颖分数(SPM)对响应的内部分析进行了分析,并在响应中进行了分析,并分析了绝对分析和分析的响应和分析。pDTO被归类为敏感与抗性,对响应进行了排名:异常/良好/中等/低。
•样本收集:根据赫尔辛基宣布和机构审查委员会(IRB)批准,收集新鲜的组织样本。•器官推导条件:基于器官的血清培养培养基,低O 2孵育,超低附着板(ULA)和Matrigel底物,具体取决于肿瘤类型。•功能性药物筛查:在384个井板中播种器官,在37 o C下孵育6天•6天•读数:通过ATP(细胞滴度发光)的生存能力•分析(Sengine App):使用15至1的新颖分数(SPM)对响应的内部分析进行了分析,并在响应中进行了分析,并分析了绝对分析和分析的响应和分析。pDTO被归类为敏感与抗性,对响应进行了排名:异常/良好/中等/低。