获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 我们提出了Mbappe,这是一种新型的运动计划方法,用于自动驾驶,将树搜索与部分学习的环境模型相结合。利用蒙特 - 卡洛搜索树(MCT)固有的可解释的探索和优化功能,我们的方法在动态环境中构成复杂的决策。我们提出了一个将MCT与监督学习相结合的框架,使自动驾驶汽车能够有效地浏览各种情况。实验结果证明了我们方法的有效性和适应性,展示了改进的实时决策和避免碰撞。本文通过为自动驾驶系统中的运动计划提供了强大的解决方案,从而为该领域做出了贡献,并具有解释性和可靠性。代码可用https://github.com/raphychek/mbappe-nuplan。