讲师名称:Drew Maurer博士和KarinaAlviña博士。房间编号:L1-101 McKnight Brain Institute(MBI)电话号码:Maurer 352-273-5092; Alviña352-294-8266电子邮件地址:drewmaurer@ufl.edu; kalvina@ufl.edu Office Hours : Upon request Preferred Course Communications : Email Prerequisites: Must be a graduate student in Neuroscience or related discipline (e.g., Psychology, Pharmacology, Clinical Health Psychology, Biomedical Engineering, Pharmacodynamics) Purpose and Outcome: This semester course provides the fundamental principles of electrical properties and synaptic signaling in excitable cells.学生将了解神经系统的生理特性,包括离子和离子通道如何控制膜电位和兴奋性,以及在单个神经元水平上如何出现信号传导,以表现为支持行为的较大网络。遵循单个细胞的功能,将涵盖它们连接的方式,包括神经元之间的突触信号传导。我们将涵盖突触的分子组成,以及不同种类的突触,传播的量化理论和神经调节。课程材料还将涵盖不同类型的突触可塑性机制,从而使突触强度使用依赖。该课程包括对整合神经生理学中的模型系统和神经回路的综述,以及神经回路与行为和认知过程的关系。课程概述:本课程将重点关注从微观量表到大脑与身体和环境的相互作用的神经系统的生理。
McKnight Brain Institute,L1-108室讲师:Paola Giusti-Rodriguez博士,精神病学系助理教授Giustirodriguezp@ufl.ufl.edu 352-294-4295 Tezcan Cancan ozrazgat-Baslanti研究协会副局长,ICTICENT,ICKINICAL,ICKINICER董事352-273-6668办公时间:通过约会优先课程通信:电子邮件先决条件:ERS-AI计划中的博士生或在教师批准后。目的和结果:通过课堂讲座,口头演示和论文讨论,学生将学习如何阅读,批判性评估和讨论研究论文,重点是开发AI管道,以解决广泛的生物医学研究问题,涉及新颖的AI模型开发以及AI伦理和信托。学生将学习如何口头向一群涉及同事,外行人,临床医生和患者的临床和生物医学AI的利益相关者提供口头上的科学结果。他们将获得有关需要AI解决和深入了解如何设计有关实验并提出科学问题的广泛生物医学研究问题的深入知识。学生将学习如何运用AI技能来回答新的生物医学问题。课程概述:该期刊俱乐部将为研究生提供进一步发展其在生物医学AI中当前科学研究的阅读,解释和交流技能的机会。课程目标和/或目标:成功完成本课程后,学生将了解如何保持医学学术研究以及基本生物科学的学术研究,如何利用人工智能和机器学习来帮助医师,基本生物学家和患者以及
•荣誉提及:IMS 20193MT®竞赛,2020•荣誉奖:IMS 20203MT®比赛,2019年•3 Rd冠军:IMS 2019学生设计竞赛,2019年•IMS 2019/ RFIC2019博士学位学生赞助(旅行奖),2019年•2019年•2019年US NUSI USIS IUSNC-usi Ardive Ardival Ardival wrivers•2019年,•2019年,2019年,2019年•2019年,2019年,2019年,2019年,2019年,2019年,2019年,2019年•2019年,2019年,2019年,2019年,2019年,2019年,2019年,2019年,2019年• (URSI-GASS)•NSF IEEE RFIC'20学生会议注册奖,2020年•FIU 2018秋季学生会议奖,2018年•McKnight奖学金旅行和论文赠款(2019年和2020年)•2019年USNC-IRSI usnc-ursi Travel Travel奖学金NRSM在Colorado•2 ND Place Winner and Origannna in and Irnna in and Inderna intranna: Electromagnetics at FIU • Al Hall Memorial Award, Florida Academy of Sciences • 2017-Association of Southeastern Biologists (ASB) Support Award for First generation Undergraduate • 2017-Elizabeth Hayes Travel Award to attend the Florida Academy of Sciences Meeting • 3 rd Place Winner: Mathematics Olympics (2015) • 1 st Place Winner: 2015 State-wide Statistical Analysis Competition (Florida) •第二名获奖者:2015年全州未来的商业教育家(佛罗里达州)•第4位获奖者:2015年在州范围内的宏观经济学(佛罗里达州)•第4名获奖者:2015年国家级别的未来商业教育家(美国)专业会员
Lynn Tubbs OCFS, Cross-Over Youth Director Executive Committee, Contributor Dana Barrett* OCFS, Youth Advocate Executive Committee, Contributor Trista Bora Court Improvement Project Executive Committee, Contributor Sue Shafer* Court Improvement Project Executive Committee, Contributor Martinez Humero OCFS, Juvenile Justice Director Executive Committee Amanda Darling OCFS, Regional Office Director Systemic Factor Item Lead Becky Colman OCFS, Data Analytics Systemic Factor Item Lead Heather Girard OCFS, Policy Director Systemic Factor Item Lead John Thompson OCFS, Senior Education Specialist Systemic Factor Item Lead Molly McHale OCFS, Universal Assessment Lead Systemic Factor Item Lead Naomi Schultz OCFS, Policy Systemic Factor Item Lead Shelly Aubertine-Fiebich OCFS, Permanency Bureau Director Systemic Factor Item Lead Christine McNall OCFS, Policy Systemic Factor Item Lead Teresa Bruce OCFS, Policy系统性因素项目负责人Carolyn可能* OCFS,家庭政策顾问执行委员会,撰稿人Hui-Shien TSAO OCFS,数据分析CFSR数据负责人Karen Kissinger OCFS,预防局局长撰稿人Marie Limbach OCFS,家庭暴力局,家庭暴力局。撰稿人戴夫·弗洛利伦·希尔赛德(Dave Fluellen Hillside)焦点小组成员让·加尔·希尔赛德(Jean Galle Hillside)焦点小组成员焦点小组成员Carlie Carl Villa成员Lauri McKnight儿童等待父母焦点小组成员Nichole Knowles Glove Howles Acation成员Brian Sczepanski小组Brian Sczepanski Pathways焦点小组焦点小组成员KATE CHATAN NYC,ACS White Nyc,Acs White Nyc,Acs White Nyc,ACS撰稿人
1 美国德克萨斯州休斯顿贝勒医学院医学院 2 美国卫生与公众服务部美国老龄化管理局 / 社区生活管理局,美国华盛顿特区 3 美国加利福尼亚州洛杉矶加州大学洛杉矶分校塞梅尔神经科学与人类行为研究所精神病学系 4 美国加利福尼亚州旧金山加州大学旧金山分校医学院记忆与衰老中心 5 美国加利福尼亚州旧金山全球脑健康研究所 6 爱尔兰都柏林都柏林圣三一学院 7 美国俄勒冈州波特兰俄勒冈健康与科学大学医学院 8 美国俄勒冈州波特兰州立大学城市与公共事务学院老龄化研究所 9 阿根廷布宜诺斯艾利斯法瓦洛罗大学 INECO 基金会认知与转化神经科学研究所 (INCYT) 10 阿根廷布宜诺斯艾利斯国家科学技术研究委员会 (CONICET) 11智利圣地亚哥阿道夫伊瓦涅斯大学 12 哥伦比亚巴兰基亚加勒比自治大学 13 澳大利亚悉尼 ARC 认知及其障碍卓越中心 14 美国马萨诸塞州贝尔蒙特麦克莱恩医院 15 美国马萨诸塞州剑桥哈佛医学院 16 美国宾夕法尼亚州匹兹堡大学精神病学系 17 美国佛罗里达州迈阿密佛罗里达大学医学院麦克奈特脑研究所和神经病学系 18 美国内华达州拉斯维加斯内华达大学克利夫兰诊所 Lou Ruvo 脑健康中心综合健康科学学院脑健康系 19 美国加利福尼亚州旧金山加州大学医学院老年医学分部 20 美国德克萨斯州休斯顿德克萨斯医学中心创新研究所 21 澳大利亚维多利亚州墨尔本墨尔本大学精神病学系 22 IMPACT澳大利亚维多利亚州吉朗市迪肯大学医学院 SRC 23 美国加利福尼亚州帕洛阿尔托市斯坦福大学医学院精神病学系精神健康创新头脑风暴实验室 24 澳大利亚南澳大利亚州阿德莱德市阿德莱德大学医学院精神病学学科
作者:Minghua Liu 1、Farid Khasiyev 2、Sanjeev Law 1,3,4、Antonio Spagnolo-Allende 1、3 Danurys L Sanchez 1,3,4、Howard Andrews 5、Qiong Yang 6、Alexa Beiser 6、Ye Qiao 7、Emy A 4 Thomas 8、Jose Rafael Romero 9、Ta tjana Rundek 10,11,12、Adam Brickman 1,3,4、Jennifer J Manly 1,3,4 5、Mitchell SV Elkind 1,13、Sudha Seshadri 9,14、Christopher Chen 15、Ralph L Sacco 10,11,12、Saima 6 Hilal 15、Bruce A Wasserman 7,16、Giuseppe 1,3,4、Myriam Fornage 8,17; 7 8 隶属关系: 9 1 哥伦比亚大学瓦格洛斯内科与外科医学院神经病学系,10 美国纽约州纽约市 11 2 圣路易斯大学医学院神经病学系。密苏里州路易斯,12 3 TAUB研究疾病研究所和衰老大脑,Vagelos学院,13个医师和外科医生,哥伦比亚大学,纽约,纽约,纽约,14 4 4 4 The Sergievsky Center,Vagelos医师和外科学院,哥伦比亚大学,15年,纽约大学,纽约大学,纽约,美国16 5 BISTATIS IS CUPPLY SHILLECH,MAIL SHICOL,MAIL SHILEBY,USY SEPRICY,MA SERVELY,MA NOWSONN,17 NY SONTON,BOST,NY ny约翰·霍普金斯大学医学院,美国马里兰州20 8布朗基金会分子医学研究所,MC政府医学院,美国德克萨斯州霍斯顿市德克萨斯大学卫生科学中心21 2 22 9美国马萨诸塞州波士顿医学院神经病学部美国佛罗里达州27号Iami Miller医学院28 13 13哥伦比亚大学哥伦比亚大学,美国新纽约州30 14 Glenn Biggs阿尔茨海默氏症和神经退行性疾病研究所,德克萨斯大学健康科学中心,美国德克萨斯州圣安东尼奥市31号
美国 5- 美国佛罗里达州盖恩斯维尔佛罗里达大学生理科学系 6- 美国佛罗里达州盖恩斯维尔佛罗里达大学药理学和治疗学系 资金:这项工作得到了 NIH 对 Habibeh Khoshbouei (HK) 的资助:R01NS071122- 07A1 (给 HK)、R01DA026947-10、美国国立卫生研究院主任办公室拨款 1S10OD020026-01 (给 H. K) R01DA058143-02 (给 HK)、R21NS133384-01 (给 HK)、Evelyn F. 和 William L. McKnight 脑研究所的 Gator Neuroscholars 计划 (给 AG) 以及 Karen Toffler 慈善信托基金 (给 AG)。摘要众所周知,中脑多巴胺神经元影响中枢神经系统功能,但越来越多的证据表明它们对外周免疫系统有影响。我们在此证明,中脑多巴胺神经元通过多突触通路从背迷走神经复合体 (DVC) 到腹腔神经节形成到脾脏的回路。中脑多巴胺神经元调节表达 D1 样和 D2 样多巴胺受体的 DVC 神经元的活动。中脑多巴胺神经元的体内激活会诱导 DVC 中的多巴胺释放,并增加 DVC 和腹腔神经节中的即刻早期基因表达,表明神经元活动增强。激活这个中脑至脾脏回路可减轻脾脏重量并减少幼稚 CD4 + T 细胞群,而不会影响总 T 细胞数量。这些发现揭示了一条功能性的中脑- DVC-腹腔神经节-脾脏通路,中脑多巴胺神经元通过该通路调节脾脏免疫。这些对免疫系统神经调节的新见解对于涉及多巴胺神经传递改变的疾病具有重要意义,并有望成为免疫治疗干预的潜在靶点。简介虽然中脑多巴胺神经元在中枢和外周调节中起着关键作用,但将它们与外周免疫器官连接起来的精确回路仍然很大程度上未定义。虽然在揭示身体与大脑之间的通讯方面已经取得了实质性进展 1 ,但反向通路(大脑如何影响外周器官,特别是通过多巴胺信号传导)仍不清楚。新出现的证据强调了大脑对外周系统的重要影响,特别是在神经免疫相互作用的背景下。例如,Zhu 及其同事 2 发现了中枢神经系统疼痛处理与脾脏免疫之间的功能联系,这表明参与免疫调节的神经通路远远超出了大脑的直接环境,影响着脾脏等关键器官。这些发现意味着中脑多巴胺能神经元可能在协调外周免疫反应中发挥着以前未曾发现的作用。在帕金森病 (PD) 中,中脑多巴胺神经元的退化与外周免疫功能障碍的变化密切相关,据信
机器学习定义精度 tDCS 用于改善认知功能 Alejandro Albizu 1,2 、Aprinda Indahlastari 1,5 、Ziqian Huang 1,4 、Jori Waner 1,5 、Skylar E. Stolte 1,3 、Ruogu Fang 1,3,4,† 和 Adam J. Woods 1,2,5,† 1 美国盖恩斯维尔佛罗里达大学麦克奈特脑研究所认知衰老和记忆中心 2 美国盖恩斯维尔佛罗里达大学医学院神经科学系 3 美国盖恩斯维尔佛罗里达大学 Herbert Wertheim 工程学院生物医学工程系 J. Crayton Pruitt Family 4 美国盖恩斯维尔佛罗里达大学 Herbert Wertheim 工程学院电气与计算机工程系 5 美国盖恩斯维尔佛罗里达大学公共卫生与健康职业学院临床与健康心理学系美国盖恩斯维尔 † 共同通讯作者 摘要 背景 经颅直流电刺激 (tDCS) 结合认知训练 (CT) 被广泛研究作为一种治疗工具,用于增强患有和不患有神经退行性疾病的老年人的认知功能。先前的研究表明,tDCS 结合 CT 的益处因人而异,这可能是由于个体神经解剖结构的差异所致。目的本研究旨在开发一种方法来客观地优化和个性化电流剂量,以最大限度地提高非侵入性脑刺激的功能收益。方法基于样本数据集 (n = 14) 中电流密度的计算模型,训练支持向量机 (SVM) 模型来预测治疗反应。部署的 SVM 的特征权重用于加权高斯混合模型 (GMM),通过找到最优电极蒙太奇和施加的电流强度 (优化模型),最大限度地提高将 tDCS 无反应者转变为反应者的可能性。结果 通过提出的 SVM-GMM 模型优化的电流分布显示,在目标脑区内,最初无反应者和有反应者之间的体素一致性为 93%。与优化前的模型相比,原始无反应者的优化电流分布与有反应者的当前剂量接近 3.38 个标准差。优化模型还分别实现了 99.993% 和 91.21% 的平均治疗反应可能性和归一化互信息。在 tDCS 剂量优化之后,SVM 模型成功预测了所有对优化剂量无反应的 tDCS 患者为有反应者。结论 本研究结果为 tDCS 精准医疗的定制剂量优化策略奠定了基础,以改善老年人认知能力下降的治疗结果。关键词 tES、衰老、机器学习、有限元模型、高斯混合模型、精准医学
gentry 1,2, *,李陈3, *和拉蒙·C·太阳1,2, * 1 1佛罗里达州佛罗里达州盖恩斯维尔大学医学院生物化学与分子生物学系,美国佛罗里达州盖恩斯维尔大学2佛罗里达大学神经科学系,美国佛罗里达州盖恩斯维尔大学5成瘾研究与教育中心,佛罗里达大学,佛罗里达州盖恩斯维尔,佛罗里达州盖恩斯维尔6麦克奈特脑研究所,佛罗里达大学,佛罗里达州盖恩斯维尔大学,佛罗里达州7 7美国佛罗里达州盖恩斯维尔市9佛罗里达大学化学系,美国佛罗里达州盖恩斯维尔大学10年老化学院,佛罗里达大学,佛罗里达州盖恩斯维尔,美国#这些作者同等贡献:Harrison A. Clarke; Xin MA; Cameron J. Shedlock *这些作者共同监督这项工作:Matthew S. Gentry;李陈拉蒙·C·太阳摘要:代谢产物,脂质和聚糖是参与复杂生物系统的基本生物分子。它们通过定义生物体的生理学和病理学的无数途径和分子过程进行代谢引导。在这里,我们提出了一种蓝图,用于使用质谱成像从单个组织中对空间代谢组,脂肪组和糖的同时分析。个人赞美原始的实验协议,我们的工作流程包括一个称为空间增强多组学界面(SAMI)的计算框架,该框架提供了多组学的整合,高尺寸聚类,空间解剖学映射,具有匹配的多组学特征,以及为无效的互联网分配和互动的互动式分配,并提供匹配的多组学特征,并提供互动生物学。INTRODUCTION Metabolomics (Fiehn, 2002; Gibney et al., 2005; Lisec et al., 2006), lipidomics (Cajka and Fiehn, 2016; Han and Gross, 2005), and glycomics (Cummings and Pierce, 2014; Ruhaak et al., 2010; Wada et al., 2007) are three distinct facets of omics methodologies, each offering a unique window进入活生物体中相连且复杂的生化过程。这些领域的当前状态缺乏空间分辨率和统一的综合分析,这些分析提供了互连代谢景观的广泛概述。发展空间分辨的代谢组学,脂质组学和糖基因对于促进我们对生物系统的了解至关重要,并且有可能改变我们对复杂组织代谢异质性的理解,发现新型的生物标志物甚至治疗靶标。然而,这种综合方法的发展受到每个分子类别的理化特性和分析要求的固有差异的挑战。基质辅助激光解吸/电离(MALDI)质谱成像作为空间分辨分子分析的强大工具出现,提供了克服与合并样品分析相关的主要限制的可能性(Caprioli等,1997; McDonnell and Heeren,2007年)。
1. Kalia LV, Lang AE。帕金森病。柳叶刀 2015;386:896-912。2. Giros B, Caron MG。多巴胺转运蛋白的分子表征。药理学趋势 1993;14:43-49。3. Mozley PD, Schneider JS, Acton PD 等。[99mTc]TRODAT-1 与帕金森病患者和健康志愿者中多巴胺转运蛋白的结合。核医学杂志 2000;41:584-9。4. Kish SJ, Shannak K, Hornykiewicz O。特发性帕金森病患者纹状体多巴胺损失模式不均匀。病理生理和临床意义。 N Engl J Med 1988;318(14):876-80。5. Brooks DJ。多巴胺转运蛋白的分子成像。Ageing Res Rev 2016;30:114-21。6. Seifert KD、Wiener JI。DaTscan 对运动障碍诊断和管理的影响:一项回顾性研究。Am J Neurodegener Dis 2013;2(1):29-34。7. Wullner U、Kaut O、deBoni L、Piston D、Schmitt I。帕金森病中的 DNA 甲基化。J Neurochem 2016;139(增刊 1):108–120。 8. Miranda-Morales E、Meier K、Sandoval-Carrillo A、Salas-Pacheco J、Vazquez-Cardenas P、Arias- Carrion O。DNA甲基化对帕金森病的影响。Front Mol Neurosci 2017;10:225。9. Dupont C、Armant R、Brenner AC。表观遗传学:定义、机制和临床视角。Stem Cell Res Ther 2016;27:351-7。10. Ai SX、Xu Q、Hu YC 等。散发性帕金森病患者血液中 SNCA 的低甲基化。J Neurol Sci 2014;337:123-128。11. Schmitt I、Kaut O、Khazneh H 等。 L-多巴在体内和体外增加帕金森病患者突触核蛋白的DNA甲基化。Mov Disord 2015;30:1794–801。12. De Mena L、Cardo LF、Coto E、Alvarez V。帕金森病患者和健康对照者的大脑中PARK2的DNA甲基化没有差异。Mov Disord 2013;28(14):2032–3。13. Coupland KG、Mellick GD、Silburn PA等。帕金森病患者群体中MAPT基因的DNA甲基化以及维生素E在体外的调节作用。Mov Disord 2014;2913:1606–14。 14. Cai Y, Liu S, Sothern RB, Xu S, Chan P. 健康和帕金森病患者总白细胞中时钟基因 Per1 和 Bmal1 的表达。欧洲神经学杂志 2010;17(4):550-4。15. Su X, Chu Y, Kordower JH 等。帕金森病中的 PGC-1α 启动子甲基化。PLoS One 2015;10(8),e0134087。16. Moore K, McKnight AJ, Craig D 等。帕金森病的表观基因组全关联研究。神经分子医学 2014;16(4):845-55。
