1。Abul-Husn NS等。 一种蛋白质截短的HSD17B13变体和免受慢性肝病的保护。 NEJM 2018; 378:1096-1106。 2。 ma y等。 Handelman SK。 17-羟基类固醇脱氢酶13是一种肝视黄醇脱氢酶,与非酒精性脂肪肝病的组织学特征相关。 Hepatology 2019; 69:1504-1519。 3。 Luukkenon等。 羟基固醇17-β脱氢酶13变体增加磷脂,并预防非酒精性脂肪肝病中的纤维化。 JCI Insight 2020; 5(5):E132158。 4。 Qadri等。 磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。 Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 McReynolds等。 ini-822:靶向HSD17B13,这是一种经遗传验证的慢性肝病靶标,在NASH模型中具有较小的分子抑制剂。 Hepatol 2022 76:S1-S1564,2022年10月。 6。 McReynolds等。 临床前药效学研究小分子对HSD17B13的小分子抑制INI-822 J乙醇2023Abul-Husn NS等。一种蛋白质截短的HSD17B13变体和免受慢性肝病的保护。NEJM 2018; 378:1096-1106。 2。 ma y等。 Handelman SK。 17-羟基类固醇脱氢酶13是一种肝视黄醇脱氢酶,与非酒精性脂肪肝病的组织学特征相关。 Hepatology 2019; 69:1504-1519。 3。 Luukkenon等。 羟基固醇17-β脱氢酶13变体增加磷脂,并预防非酒精性脂肪肝病中的纤维化。 JCI Insight 2020; 5(5):E132158。 4。 Qadri等。 磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。 Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 McReynolds等。 ini-822:靶向HSD17B13,这是一种经遗传验证的慢性肝病靶标,在NASH模型中具有较小的分子抑制剂。 Hepatol 2022 76:S1-S1564,2022年10月。 6。 McReynolds等。 临床前药效学研究小分子对HSD17B13的小分子抑制INI-822 J乙醇2023NEJM 2018; 378:1096-1106。2。ma y等。Handelman SK。17-羟基类固醇脱氢酶13是一种肝视黄醇脱氢酶,与非酒精性脂肪肝病的组织学特征相关。Hepatology 2019; 69:1504-1519。3。Luukkenon等。羟基固醇17-β脱氢酶13变体增加磷脂,并预防非酒精性脂肪肝病中的纤维化。JCI Insight 2020; 5(5):E132158。4。Qadri等。 磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。 Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 McReynolds等。 ini-822:靶向HSD17B13,这是一种经遗传验证的慢性肝病靶标,在NASH模型中具有较小的分子抑制剂。 Hepatol 2022 76:S1-S1564,2022年10月。 6。 McReynolds等。 临床前药效学研究小分子对HSD17B13的小分子抑制INI-822 J乙醇2023Qadri等。磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 McReynolds等。 ini-822:靶向HSD17B13,这是一种经遗传验证的慢性肝病靶标,在NASH模型中具有较小的分子抑制剂。 Hepatol 2022 76:S1-S1564,2022年10月。 6。 McReynolds等。 临床前药效学研究小分子对HSD17B13的小分子抑制INI-822 J乙醇2023Luck等。人类二元蛋白相互作用的参考图。2020年4月; 580(7803):402–408。doi:10.1038/s41586-020-2188-x 6。McReynolds等。ini-822:靶向HSD17B13,这是一种经遗传验证的慢性肝病靶标,在NASH模型中具有较小的分子抑制剂。Hepatol 2022 76:S1-S1564,2022年10月。6。McReynolds等。临床前药效学研究小分子对HSD17B13的小分子抑制INI-822 J乙醇2023
a 美国空军学院,空间物理与大气研究中心,物理与气象学系,美国空军学院,科罗拉多州,美国 b i2 与美国空军学院达成合作协议的战略服务,空间物理与大气研究中心,物理与气象学系,美国空军学院,科罗拉多州,美国 c 神经信息学研究所,苏黎世联邦理工学院,传感器组,瑞士苏黎世 d 空军理工学院,工程物理系,赖特-帕特森空军基地,俄亥俄州,美国 e 罗彻斯特理工学院,切斯特 F. 卡尔森成像科学中心,纽约州罗彻斯特,美国 f 洛斯阿拉莫斯国家实验室,空间科学与应用组,新墨西哥州洛斯阿拉莫斯,美国 g 西悉尼大学,国际神经形态系统中心,新南威尔士州彭里斯,澳大利亚
另一方面,我们可以通过不同的方法检查文献是否对固定相的表征进行表征。但是,所有这些方法的起点是基于选择作为单个二阶相互作用的一些化合物的保留数据,这些相互作用可能会在气相色谱分离下分析物和固定相之间发生。在1966年发表的文章中,Rohrschneider表征了22个Sta tionary阶段的极性,其保留指数的5种模型组分的保留指数有所不同,这些模型组件是苯,乙醇,乙醇,乙基甲基酮,硝基甲烷和吡啶[3]。参考值的差异值是通过在Alololar squalane固定相上测量的模型化合物的指标提供的。使用这些测试化合物,他涵盖了二阶相互作用,例如分散,π-π和诱导相互作用,电子对受体和电子对供体行为。McReynolds [4]于1970年进一步开发了这种方法,后者部分取代了测试化合物并部分扩展了它们。McReynolds常数(MRC)被广泛用于描述气相色谱站的极性Ary相,为均匀的COM Parison提供了机会。对于CHRO Matographic指数(CPI),将量表定义为0到100,其中Smocalane代表最极性的零点,而100%Cyano Propyl Siloxane相代表最极性100值。根据测量的MRC val UES的一定固定相可以放在0到100之间的尺度上。1990年Abraham等。1990年Abraham等。许多作者根据不同的考虑(McReynolds收集的大量CHRO Matographic数据)(在两个温度LEV ELS处于77个固定相测量的376种化合物的保留指数,在226个固定阶段的10种化合物的保留指数[5] [5]。介绍了Solva Tion参数模型,以描述具有5个常数的McReynolds 77平台ARY相位,而不是一个单个极性指数[5]。基于溶剂化参数模型Poole [1],使用多个线性回归分析构建了52个壁涂层毛细管柱的色谱系统常数数据库。
Bernstein、Charleton Copeland、Dan Deacon、Rebecca Eisenberg、Michael Froomkin、Jim Gibson、Patrick Gudridge、Kristian Hammond、Corinna Lain、Matt Sag、Andres Sawicki、Alex Stremitzer、Charlotte Tschider 和 Christopher Yoo。感谢 Luca Baltensberger、Rabea Benhalim、Ana Bracic、Christopher Corts、Sue Glueck、Claudia Haupt、Fiona Illi、Izzy Longstaff、Andrea Matwyshyn、Emily McReynolds、Aileen Neilson、Paul Ohm、Nadav Orien-Peer、Gabriel Rauterberg、Blake Reid、Nikkita Rivera、Andrew Selbst、Lawrence Solum、Sloan Speck、Elizabeth Stalfort 和 Harry Surden 提供的有益评论和对话。本文受益于 AALS 2020 年会、苏黎世联邦理工学院和苏黎世大学与圣加仑大学创新法律与经济学研讨会、人工智能法律学者圆桌会议、西北大学、宾夕法尼亚大学和斯坦福大学法学院法律与 STEM 青年教师论坛、隐私法学者会议、里士满法学院教师研讨会、迈阿密大学法学院法律理论研讨会、密歇根大学法学院治理研讨会、密歇根大学人工智能与法律研讨会、Techlaw 青年学者研讨会和 We Robot 会议的慷慨反馈。我们感谢 Nathan Fuller、Abbi Lynch、Phoebe Roque、Rylee Snively 和 Angela Theodoropoulos 提供的出色研究协助。Nicholson Price 的工作得到了 Novo Nordisk 基金会 (拨款编号 NNF17SA0027784) 的支持。代表我们每个人:所有错误都是我的合著者的。
在临床前动物模型中,研究人员可以在同一薄层组织中探测神经元内的活动[例如立即早期基因蛋白产物(Mcreynolds 等人,2018 年;Aparicio 等人,2022 年)],检查神经元的投射和/或突触支配[例如管道或病毒追踪(Card and Enquist,1999 年;Saleeba 等人,2019 年)],并确定神经化学表型[例如免疫组织化学(Magaki 等人,2019 年)]。通过临床前方法可以实现很高的机制特异性。在了解人脑方面,神经影像学为研究人员提供了非侵入性地探测大脑结构、功能和连接的机会,但它也并非没有局限性。例如,功能性磁共振成像 (fMRI) 中的血氧水平依赖性 (BOLD) 信号是基于氧合血红蛋白取代脱氧血红蛋白的神经激活的代理,而其本身并不是神经活动 (Huettel 等人,2009 年)。此外,扩散加权成像 (DWI) 和衍生的纤维束成像根据受神经成分限制的水分子扩散来推断白质结构,并不代表特定的神经元靶点或突触支配。因此,已知的临床前模型中的神经解剖学和功能文献极大地增强了对神经影像学发现的解释,努力在这些方法之间找到趋同非常重要 (例如,Folloni 等人,2019 年;Haber 等人,2021 年)。类似地,临床前模型或死后人脑的解剖技术(例如钝性和/或纤维解剖)与神经影像学(例如纤维束成像)之间的共识也很重要(Wu 等人,2016 年;Oler 等人,2017 年;Pascalau 等人,2018 年)。尽管神经影像学存在局限性,但仍有很大潜力利用不同的神经影像学模式的优势并整合这些模式,以更广泛地了解神经动力学,并对无数发育、情感、认知和临床问题有更深入的机制理解。不同的神经影像学模式可能揭示与早期经验不同维度的关系,从而为神经发育提供见解。例如,扩散光谱成像揭示了童年威胁(即虐待和创伤事件)与剥夺(即社会经济)对终纹白质的对立关系(Banihashemi 等人,2021b)。此外,静息态功能连接揭示了创伤事件与中枢内脏网络连接之间的关系(Banihashemi 等人,2022),而应激源诱发的活动揭示了
Duran K,M Kohlstedt,G Van Erven,Ce Klostermann,AHP America,E Bakx,JJP Baars,A Gorissen,R de Visser,Rp de Vries,C Wittmann,Rnj Comans,Rnj Comans,Tw Kuyper,Tw Kuyper,Ma Kabel。2024。从13 c-林蛋白到13 c-甲纤维:agaricus bisporus使用聚合物木质素作为碳源。科学进步10:EADL3419。Wei W,CC Wong,Z Jia,W Liu,C Liu,F JI,Y Pan,F Wang,G Wang,L Zhao,Esh Chu,X Zhang,Jjy Sung,J Yu。2023。副细胞动物蒸馏剂使用饮食中的菊粉通过其代谢物五核酸抑制NASH。自然微生物学8:1534–1548。li H,X Kang,M Yang,Bd Kasseney,X Zhou,S Liang,X Zhang,J-L Wen,B Yu,N Liu,N Liu,Y Zhao,J Mo,J Mo,Cr Currie,J Ralph,DJ Yelle。2023。分子见解对白蚁肠道中木质植物腐烂的演变。科学进步9 EADG1258。Palmer M,JK Covington,E-M Zhou,Sc Thomas,N Habib,Co Seymour,Dai,D Lai,J Johnston,A Hashimi,J-Y Jiao,J-Y Jiao,Ar Muok,Ar Muok,L Liu,W-D Xian,W-D Xian,X-Y Zhi,X-Y Zhi,M-M Li,M Li,LP LP Silva,LP Silva,BP Bowen,bp bowen toch weie,w louie,w louie,w louie,w louie,w louie,w loue, T Woyke,Tr Northen,X Mayali,W-J Li,BP Hedlund。2023。具有异常特征的嗜热脱氧核糖核能在出乎意料的过去揭示了。ISME期刊17:952–966。Zeng X,X Xing,M Gupta,FC Keber,JG Lopez,Y-CJ Lee,A Roichman,L Wang,MD Neinast,Donia,Donia,Mwühr,C Jang,JD Rabinowitz。2022。肠道细菌营养偏好在体内定量。单元格185:3441–3456。2022。NAD前体循环宿主组织与肠道微生物组之间。细胞代谢34:1947-1959。Chellappa K,MM Reynolds,W Lu,X Zeng,F Hayat,F Hayat,F Hayat,F Hayat,S Mukherjee,S Mukherjee,S Mukherjee,RT Descamps,T Cox,L Ji,L Ji,L Ji,l Ji,s Sm,Sm,Sm Sm,Sm,Sm,Sm,Me Thaid,Me Thaid,Me Thaid,Me thaid,Ja Rabintz,Ja Rabintz,Ja Baur。
华盛顿 - 美国邮政局今天宣布,美国第75邮政局长路易斯·德乔伊已通知邮政局局局长,现在是他们开始确定其继任者的过程了。邮政局的州长与主要利益相关者合作,现在将开始确定适当的候选人,成为下一任邮政局长兼美国邮政局首席执行官。邮政局长给董事会的信:“路易斯·德乔伊(Louis Dejoy)在过去五年中一直坚定地为全国服务和邮政服务,”董事会主席琥珀·麦克雷诺兹(Amber McReynolds)说。“州长非常感谢他持久的领导和他为实现邮政服务现代化和反向数十年忽视的不懈努力。”她补充说:“路易斯是一名战士,他为邮政服务的男女奋斗,并确保美国人民在未来几年内拥有可靠且负担得起的服务。” Dejoy表示:“尽管在我们继续在基本的公共服务任务中为国家服务时,邮政服务仍有很多关键的工作要确保邮政服务在财务上是可行的,但我认为现在是时候开始确定我的继任者并为这种变化做准备的过程。我们目前正在努力的主要举措是多年计划,重要的是要建立在这个未来期间的任期。“我们对这些必要的变化处于良好状态,我一直在发展一个领导团队,其职业比今天的职业进一步迈进了未来。经过四年半的领导美国最伟大的公共机构之一,在不寻常的时期进行了巨大变化,现在是我开始思考下一阶段生活的时候了,同时也确保邮政服务为未来做好了充分的准备。“邮政服务公司计划每年将成本降低超过40亿美元,将收入提高超过50亿美元,并调整其运营网络,以整合所有邮件和包装类别的交付,以达到使现代意义并在市场上竞争的服务标准。” Dejoy补充说。对我来说重要的是,我们及时,有条不紊地提出了一个新的邮政局长,他了解我们的使命并可以成功地领导我们充满活力的组织。我将灵活地帮助这种过渡,并且我相信,在为这一变化做准备的一段时期,邮政服务将在新领导下为未来的成功而定位。” Dejoy继续说:“我为美国邮政服务的64万男女感到非常自豪,他们在每个美国社区中生活,工作和服务。尽管受到立法和监管业务模式的伤害,该模式对组织和工作场所造成了近二十年的破坏,但他们仍然坚持不懈地接受了我们正在做出的变化,以便更好地为同胞服务。与我的职业生涯和他们的公共服务使命相关联,这是我一生的乐趣,也是我职业生涯的重大成就。经过多年的战略忽视和投资不足之后我期待在我剩余的时间里与他们合作。” Dejoy首先被要求在2020年春季领导邮政服务,这是该组织的巨大运营和金融危机
艾肯,史蒂夫 (南安特里姆) 哈维,哈利 (斯特兰福德) 艾伦,安迪 (东贝尔法斯特) 霍尼福德,戴维 (拉甘谷) 阿利斯特,吉姆 (北安特里姆) 亨特,卡拉女士 (东伦敦德里) 阿奇博尔德,Caoimhe 博士 (东伦敦德里) 欧文,威廉 (纽里和阿马) 阿姆斯特朗,凯莉女士 (斯特兰福德) 科尔尼,迪克兰 (南安特里姆) 贝克,丹尼 (西贝尔法斯特) 凯利,格里 (北贝尔法斯特) 比蒂,道格 (上班恩) 金明斯,利兹女士 (纽里和阿马) 布莱尔,约翰 (南安特里姆) 金斯顿,布莱恩 (北贝尔法斯特) 博伊兰,卡塔尔 (纽里和阿马) 小彭格利,艾玛女士 (拉甘谷) 布拉德利,莫里斯 (东伦敦德里) 朗,娜奥米女士 (东贝尔法斯特) 布拉德肖,保拉女士 (南贝尔法斯特)莱昂斯,戈登 (东安特里姆) 布雷特,菲利普 (北贝尔法斯特) 麦卡利尔,迪克兰 (西蒂龙) 布罗根,尼古拉小姐 (西蒂龙) 麦卡利斯特,努阿拉小姐 (北贝尔法斯特) 布鲁克斯,大卫 (东贝尔法斯特) 麦克克罗森,丹尼尔 (西蒂龙) 布朗利,谢丽尔女士 (东安特里姆) 麦格隆,帕齐 (中阿尔斯特) 布坎南,基思 (中阿尔斯特) 麦格拉斯,科林 (南唐) 布坎南,汤姆 (西蒂龙) 麦圭根,菲利普 (北安特里姆) 巴克利,乔纳森 (上班恩) 麦克休,马奥利奥萨 (西蒂龙) 邦廷,乔安妮女士 (东贝尔法斯特) 麦伊尔文,米歇尔小姐 (斯特兰福德) 巴特勒,罗比 (拉甘谷) 麦克劳克林,西尼德女士 (福伊尔) 卡梅伦,帕姆夫人 (南安特里姆) 麦克默里,安德鲁(南唐郡) 卡罗尔,格里 (西贝尔法斯特) 麦克纳尔蒂,贾斯汀 (纽里和阿马郡) 钱伯斯,艾伦 (北唐郡) 麦克雷诺兹,彼得 (东贝尔法斯特) 克拉克,特雷弗 (南安特里姆郡) 梅森,凯茜夫人 (南唐郡) 德拉吉,帕德莱格 (福伊尔郡) 马西森,尼克 (斯特兰福德郡) 迪克森,斯图尔特 (东安特里姆郡) 米德尔顿,加里 (福伊尔郡) 狄龙,琳达夫人 (中阿尔斯特郡) 缪尔,安德鲁 (北唐郡) 多兹,黛安夫人 (上班恩郡) 穆尔霍兰,西恩女士 (北安特里姆郡) 多兰,杰玛小姐 (弗马纳郡和南蒂龙郡) 墨菲,艾恩小姐 (弗马纳郡和南蒂龙郡) 唐纳利,丹尼 (东安特里姆郡) 墨菲,康纳 (纽里和阿马郡) 邓恩,斯蒂芬 (北唐郡) 内斯比特,迈克(斯特兰福德) Durkan, Mark (Foyle) Ní Chuilín, Carál 女士 (北贝尔法斯特) Easton, Alex (北下) Nicholl, Kate 女士 (南贝尔法斯特) Eastwood, Sorcha 女士 (Lagan Valley) O'Dowd, John (上班) Egan, Connie 女士 (北下) O'Neill, Michelle 女士 (阿尔斯特中部) Elliott, Tom (弗马纳和南蒂龙)奥图尔、马修(南贝尔法斯特)恩尼斯、西尼德夫人(南下)普茨、埃德温(议长)厄斯金、黛博拉夫人(弗马纳和南蒂龙)赖利、艾斯林女士(西贝尔法斯特)弗格森、席亚拉夫人(福伊尔)罗宾逊、艾伦(东伦敦德里)弗林、奥莱西小姐(西贝尔法斯特)希恩、帕特(西)贝尔法斯特)福赛斯,黛安女士 (南唐郡) 谢林,艾玛女士 (中阿尔斯特郡) 弗鲁,保罗 (北安特里姆郡) 斯图尔特,约翰 (东安特里姆郡) 吉尔德纽,科尔姆 (弗马纳郡和南蒂龙郡) 萨格登,克莱尔女士 (东伦敦德里郡) 吉万,保罗 (拉甘谷) 斯旺,罗宾 (北安特里姆郡) 哈吉,迪尔德丽小姐 (南贝尔法斯特郡) 丁尼生,埃奥因 (上班恩郡)