讨论:人工智能系统中可以/应该被测量的属性,以及哪些属性具有/缺乏指标和测量方法;用于测量人工智能的不同测量方法及其优势/局限性;指标的不同类型和用途,以及指标可以具有的各种属性;所选指标和测量方法对评估的影响;何时需要通过玻璃盒访问人工智能系统以进行评估,以及人工智能系统的设计/方法何时会影响指标/测量方法的选择。
随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
使用我们的 3D + 投影莫尔条纹和 2D-DIC 记录测量值。在进行 CTE 测量时,我们的 TDM 系统会生成包含 3D 地形图的文件,其中包含 X、Y、Z 坐标矩阵和灰度图像。这些坐标将用作跟踪区域。我们将区域分解为较小的集合以进行位移测量。2D-DIC 允许跟踪较小的单个子集。(能够将位移结果导出为矢量图、CSV 或 jpg)。我们对 CTE 精度的依赖在于 DIC 跟踪、像素覆盖率和温度(均匀性、表面和内部温度)。
已经开发了国际高级电视和红外观测卫星垂直声音(ATOVS)处理套件(IAPP),以检索来自ATOVS测量结果的大气温度,湿度,大气总臭氧,大气总臭氧和其他参数。检索这些参数的算法包含四个步骤:1)云检测和去除,2)ATOV测量值的偏置调整,3)回归检索过程,以及4)非线性迭代物理检索。九(3 3 3)相邻的高分辨率红外音器(HIRS)/3点观测,以及先进的微波炉响起的单位-A观测值重塑为HIRS/3分辨率,可用于检索温度效果,表面皮肤温度,总大气的冰酮和微层面表面和同样的湿度,表面皮肤温度,总大气的沸腾的表面,以及同样。atovs profle检索结果通过root平方平方的差异来评估反射仪观察条件。在1 km垂直分辨率下温度的检索准确性约为2.0 k,在本研究中,在2 km垂直分辨率下的露点温度为3.0–6.0 K。IAPP现在可供全球用户用于处理实时ATOV数据。
摘要 — 在之前的工作中,我们已经展示了量子力学的基本概念和术语如何与复值量子质量函数的因式分解和边际相关,它们是联合概率质量函数的推广。在本文中,我们利用量子质量函数,讨论了从幺正相互作用和边缘化的角度实现测量。由此可见,经典测量结果严格属于局部模型,即更详细模型的边际。由边缘化产生的经典变量在非边缘化模型中不存在,不同的边缘化可能会产生不兼容的经典变量。这些观察结果由 Frauchiger-Renner 悖论说明,该悖论从量子质量函数的角度进行分析(和解决)。自始至终,本文使用因子图来表示在不同时间点具有多个测量值的量子系统/模型。
ABR 培训的测量标准不支持当前入门级课程的最低标准。使用工作和/或实验室相关数据。需要对培训文件和计划进行全面审查,以确保准确陈述 PMEL 职业阶梯的培训要求。并且在技术学校和在职培训中都提供适当的培训 AFR 39-1 职位描述适用于所有技能水平
分离染色体的流式细胞术是细胞遗传学的一种新方法,可快速测量单个中期染色体。在这种方法中,用适当的荧光染料染色的水悬浮液中的染色体被限制在激发染料的窄激光束中高速流动。发射的荧光通过光度法测量,累积的数据形成染色体荧光的频率分布。该频率分布的峰值归因于单个染色体或具有相似荧光的染色体组;峰值平均值与染色体荧光成正比,峰值面积与染色体出现频率成正比。因此,频率分布可作为核型(1、2)。此外,流式分选可根据染色体的染色特性分离染色体(3、4),这与传统的中期染色体纯化方法不同,后者依赖于速度或等密度沉降、区域离心或选择性过滤(5)。纯化单个中期染色体很重要,原因如下。富集或纯染色体部分已进行生化分析,以提供有关 DNA 或蛋白质结构的信息(6),将遗传信息转移到整个细胞(7-9),或通过体外杂交绘制基因图谱(10)。但一般来说,传统技术无法提供足够纯度的染色体,无法进行高分辨率生物或生化研究。通过基于溴化乙锭荧光的流式分选,我们以 90% 的纯度将雄性鹿 Muntiocus muntjak (2n = 7) (4) 的每个染色体和中国仓鼠 M3-1 细胞系的 14 种染色体类型分离成 8 个染色体组 (1, 3)。在我们之前对溴化乙锭染色的人类染色体的研究中,我们仅从雄性 (2n = 46) 的 24 种染色体类型中分辨出 8 个染色体组 (2, 3)。在本研究中,使用 DNA 荧光染料 33258 Hoechst 和改进的仪器,
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
生产和运输混凝土与较大的环境足迹结合在一起。制造混凝土所需的材料之一是水泥,它被认为是生产最污染的材料之一。转移到地球材料将大大降低环境影响以及生产成本。此外,提出的解决方案的可逆性可重复使用基本材料。将通过聚合物砂复合材料来确定并最终解决更具体的问题。