虽然大朗德邦联部落现在居住在俄勒冈州大朗德的大朗德保留地,但该部落的原住民曾经居住在俄勒冈州、华盛顿州西南部和加利福尼亚州北部的大部分地区。直到 1856 年这些原住民被迫离开家园后,他们才开始主要居住在大朗德。随着这次迁移和重新安置,许多部落失去了通往部落重要地点的通道,例如威拉米特瀑布、玛丽峰、桌岩等。
随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
已经开发了国际高级电视和红外观测卫星垂直声音(ATOVS)处理套件(IAPP),以检索来自ATOVS测量结果的大气温度,湿度,大气总臭氧,大气总臭氧和其他参数。检索这些参数的算法包含四个步骤:1)云检测和去除,2)ATOV测量值的偏置调整,3)回归检索过程,以及4)非线性迭代物理检索。九(3 3 3)相邻的高分辨率红外音器(HIRS)/3点观测,以及先进的微波炉响起的单位-A观测值重塑为HIRS/3分辨率,可用于检索温度效果,表面皮肤温度,总大气的冰酮和微层面表面和同样的湿度,表面皮肤温度,总大气的沸腾的表面,以及同样。atovs profle检索结果通过root平方平方的差异来评估反射仪观察条件。在1 km垂直分辨率下温度的检索准确性约为2.0 k,在本研究中,在2 km垂直分辨率下的露点温度为3.0–6.0 K。IAPP现在可供全球用户用于处理实时ATOV数据。
Ilham Y. Abdi 1.2†,Indulekha P. Sudhakaran 17,18,Vasilies 3.4,Elisabeth Kapaki 3.4,George Houlden 16,Laura Parkkinen 10,Wilma D.J.去Berg 11,Michael G.agnaf 1.2 *
图1显示了构建的一般几何形状。激光焊缝在电线馈周周围有三个梁同心。挑战相关的测量值将包括残留应力/应变成分,在构建机器上拔掉后的底板偏转以及在构建过程中的底板温度。在构建过程中,激光功率保持恒定,但是进料速度和行进速度变化以产生良好的几何形状。激光校准数据,电线和底板材料组成,广泛的构建信息,包括编程的进料速率和旅行速度(G代码)以及一些热电偶数据。我们将不提供材料属性数据。
•基准挑战CHAL-ABS2025-01-SR:预测平均固体尺寸,平均最大和最小隔离的NB和MO在细胞壁和细胞内部的NB和MO的质量分数,以及在AS-Buuguign微型结构中不包括氧化物的沉淀物的体积分数。预测在870°C的应力释放热处理1小时后,在微观结构中的沉淀物的体积分数(不包括氧化物)。 •基准挑战CHAL-BAMB2025-01-H:在细胞壁和细胞内部的NB和MO分别预测NB和MO的平均固定细胞大小,平均最大和最小隔离质量分数,以及在构造的微观结构中排除氧化物的沉淀物的体积分数。预测在1150°C均质热处理1小时后,在微观结构中的沉淀物的体积分数,不包括氧化物。
摘要 - 混合超级电容器(HSC)是创新的储能解决方案,在许多应用领域中变得至关重要。他们的性能受到多个参数的强烈影响,例如温度条件,负载特征和电荷(SOC)。出于这个原因,在不同情况下表征其表演变得至关重要。调查性能的最佳方法之一是采用电化学阻抗光谱(EIS)测量。但是,由于HSC是一项最近的技术,因此目前在文献中尚不提供针对阻抗分析的数据库和研究。因此,这项工作介绍了在不同的温度和SOC条件下进行大型测量运动的结果,以获取大型频率范围(从1 MHz到100 kHz)的阻抗数据。构造的数据集已用于研究阻抗异常,并分析温度和SOC可能对HSC阻抗产生的影响。大型获得的数据集也可以用于诊断和预后目的。本研究中使用的数据集可从https://doi.org/10.6084/m9.figshare.24321496获得。
我们认为量化协议是必要的,原因是几个原因。首先,作为开发人员,早期采用者,建筑商,用户和设施经理,我们意识到,在执行相关测量结果时,并非总是需要达成共识,也不总是就最佳实践达成共识。我们想共享我们认为提供最关键的测量的实践。这种测量可以提供有关系统性能的有价值的诊断信息,尤其是在定期执行表征时。第二,我们的目标是进一步将多光子显微镜从边界技术转变为常规工具,类似于共聚焦显微镜。第三,我们希望这项工作将有助于对实验室内部和整个实验室的结果进行更可靠的比较。第四,最后,我们渴望让制造商以类似的定量方式指定其显微镜的性能,并为这种表征开发更好的工具。总的来说,我们希望推动该领域以提高数据质量和严格目的
摘要:纳米颗粒形成的合成方法产生了异质种群的纳米颗粒,在研究反应性时,可以研究单纳米颗粒的化学植物学特性的技术。虽然单一实体电化学实验已被充分记录在包括球形金属纳米颗粒,乳液液滴和细胞在内的对称对象的,但由于碰撞过程中物体方向的自由度增强,因此不对称物体为额外的挑战提供了额外的挑战。最近,由于高电荷密度能力,机械稳定性和生物相容性的结合,石墨烯已成为一种突出的电极材料,其应用范围从体内感应到工业能量转换反应。石墨烯纳米片(GNP)是一种准二维导电纳米材料,其在微米尺度上具有两个尺寸,而在纳米尺度上有一个,在功能上充当平面材料。在与铁甲醇(外球氧化还原介体)存在下与电极表面碰撞后,观察到广泛的电流响应,这些反应被观察到对称对象的广泛电流响应。在这里,我们介绍了相关的电化学和光学显微镜,以同时在单个实体级别探测化学和空间信息,以完全了解石墨烯纳米片的纳米级的碰撞动力学。此外,这种相关的技术允许对复杂电流响应的反卷积,从而揭示了数十秒范围内耦合的瞬态事件。从这些测量值中,稳态电流的变化用于氧化亚甲醇的氧化可能与GNP碰撞时电极表面积的变化直接相关,从而深入了解了单一实体的几何形状|没有两种组合技术的电极界面,否则将无法访问。
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。