1 不来梅大学环境物理研究所,FB 1,P.O.Box 330440,D-28334 不来梅,德国 2 METAIR AG,Airfield Hausen am Albis,CH-8915 Hausen am Albis,瑞士 3 苏黎世应用技术大学,CH-8400 温特图尔,瑞士 4 柏林自由大学空间科学研究所,Carl-Heinrich-Becker-Weg 6-10,D-12165 柏林,德国 5 ESA / ESTEC,Keplerlaan 1,2201 AZ 诺德维克,荷兰
美国商务部,芭芭拉·哈克曼·富兰克林,部长 技术管理局,罗伯特·M·怀特,技术部副部长 美国国家标准与技术研究所,约翰·W·莱昂斯,主任
摘要 本研究重点研究了确定作用于具有自适应机翼几何形状(变形几何形状)的微型飞行器 (MAV) 的空气动力的实验和分析方法。本设计的目标是通过使用智能材料修改机翼的弯曲度和厚度,以在飞行阶段实现最佳自主性或航程。因此,研究了最相关的变形配置。它们由马德里理工大学 (UPM) 通过增材制造设计和制造,并在国家航空航天技术研究所 (INTA) 的低速风洞中进行了测试。粒子图像测速技术用于研究不同变形配置的尾流结构。实验测试以 10 m/s 的自由流速度针对从 0º 到 30º 的几个攻角进行。采用了两种理论方法:横向动能积分和 Maskell 理论;分别用于确定诱导阻力系数和升力系数。对模型后面的尾涡系统进行了完整的定性和定量研究,以了解变形几何的气动行为。
摘要 — 为了实现长期自主导航中稳健、无漂移的姿态估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的方法,该方法是基于紧耦合非线性优化的估计器。与以前的松散耦合研究不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来制定惯性残差,并利用这种算法的结果来有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合融合方法。与室外无人机 (UAV) 飞行中的松耦合方法相比,平均位置误差降低了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是第一项在基于优化的视觉惯性里程计算法中紧密融合全局位置测量的工作,利用 IMU 预积分方法定义全局位置因子。
用于检查大气的各种特性、自动驾驶以及制图和地形等许多其他方面。如今,LiDAR 在自动驾驶方面的可能性正在高度发展,但如果我们考虑其他类型的交通,如远洋运输或一般的运输和导航,我们就会发现它还没有得到充分的开发和利用,无法满足更安全的运输需求。这个话题可能被忽视,因为水下使用存在局限性,与 LiDAR 在大气和地球表面的使用相比,这似乎导致了更多有关其发展的问题。本文讨论了如何使用 LiDAR 造福航运、导航、自主导航、当前天气测量和检测,并提出了一些建议。这项工作的范围是介绍 LiDAR 在航运中可以提供的多种用途,以及为深海海底和水下世界探测提出的整体解决方案。本文对 LiDAR 的新用途和不熟悉的用途进行了一些思考,这些用途可能会在许多方面改变未来。我想强调一下 LiDAR 在海岸线保护、深海海底物种、动物、藻类和其他水生植物以及海绵生物分析方面的作用。此外,其中一个有趣的应用是检测水盐度水平和分析水下矿物的化学性质。稍后,我们将提到更多应用
Y De Deene MR 部门 (-1K12),根特大学医院,De Pintelaan 185,9000 Gent,比利时 电子邮件:yves.dedeene@ugent.be 摘要。在放射治疗凝胶剂量测定中,根据患者的计划治疗对人形模型进行照射。这会产生三维剂量分布。为了读出凝胶剂量计模型,通常使用磁共振成像 (MRI)。由于特定的干扰,空间和剂量可靠性都可能受到影响。必须优化测量序列并补偿可能的成像伪影,以满足所提出的空间和剂量精度。在这篇评论中,处理了几种干扰源并提出了补偿策略。提出了读出技术的良好实践准则。最后,介绍了一种用于成像序列质量控制的工具。
位不仅是数据存储的基本组成部分,也是所有计算机的基本组成部分。计算机以二进制数字工作,将 0 和 1 以无数种模式组合在一起。这些二进制数字称为位,是数据存储的最小单位。8 位组合在一起就得到一个字节。字节用于存储单个字符,无论是字母、数字还是标点符号。所有内存存储都以字节表示,因此尽管位可能是构建数据存储的基础,但字节才是真正表示任何一种存储解决方案可用性的组成部分。因为存储以字节表示,所以所有更大的单位通常都用它们的缩写名称来表示。这意味着你可以继续添加更多前缀来谈论越来越多的数据。除了太字节,还有拍字节 (PB)、艾字节 (EB)、泽字节 (ZB) 和尧字节 (YB)。
高度范围50-130 km的地球的中层和较低的热层是我们大气中的一个迷人部分。辐射,动力学,微物理和化学过程之间的复杂相互作用产生了几种突出现象,其中许多以中间区域为中心(80-100 km)。这些现象包括夜光云,极性的夏季回声,气象材料的消融和转化以及地球的气流。强烈分层和小规模相互作用是这些现象和中间区域的常见特征。为了在相关的空间尺度上研究相互作用,声音火箭的原位测量对于中层研究至关重要。本文提出了用于发声火箭的新测量技术和分析方法,从而有助于提高我们对这一偏远大气的理解。考虑到需要以1 km/s的典型火箭速度进行测量,因此既有选择性,敏感,精心校准的仪器的设计,又是由于空气动力学影响而引起的。本论文包括对气象颗粒的影响和采样技术的定量空气动力学分析,揭示了由于粒子流动而引起的明显尺寸歧视。对中层冰颗粒种群的光学技术,从而产生了基于短紫外线波长下MIE散射的较小颗粒的仪器概念。此处介绍的工作还为2010年7月的Esrange即将到来的Phocus Rocket运动提供了重要的预研究。火箭传播的共振荧光测量原子氧是严格评估的,从而导致基于O 2气流排放的光度计的新校准概念。phocus(夏季上层中的颗粒,氢和氧化学)将解决三个主要的中层参与者之间的相互作用:陨石烟,夜光云和气相化学。
Geek and the Chemest:DPPH Assy在饮用氧气的用途中,消耗和3d 3d 3d 3d 3d 4d,Alexander,Alexander,Alexander,Athio氧化的礼物;坎迪亚人,亚历山大;低音,米歇尔; Zucchel,Andrea;森林,鲁本;来自拍卖,奇拉;卖方,Stefanus;好处,安纳玛里。- 在:Actutors and Sendsos。b,Thicl。-ISSN 0925–4005。-282:(2019年),pp。559-566。[10,1016/j.snb.2018.11.019]