量子计算是旨在实现量子系统及其操纵的多方面研究领域。本论文讨论了在追求完全操作的量子计算机时的两种著名方法的组合 - 基于Majorana Quasiparticles的电路量子电动力学和拓扑量子计算。在电路量子电动力学中,量子信息被存储到小型超导电路元件中,这些电路元件与微波范围的电磁辐射相互作用允许非常有效地处理量子信息。这种方法已被证明对控制和读数超导Qubits非常有用,即携带Quantu信息的小电路元素。由于在微波谐振器中可以实现的极点耦合非常强,因此电路量子电动力学架构对于执行高度敏感的量子测量特别有用。超导性本身是一种有趣的物质状态,显示出各种不同的现象。尤其是,超导体中拓扑阶段的发现为量子计算打开了新的视野。一个认可的拓扑超导性的系统是一种半导体 - 驱动器纳米线,其末端发生了特殊的零模式。这些所谓的Majorana零模式非常可靠,因此非常适合容忍故障的量子计算。本文的第一部分研究了Majorana零模式与电磁辐射与微波频率的耦合。在此处考虑的光耦合机械词是针对位于电压偏置超导隧道连接处的Majorana零模式出现的。在Majorana零模式存在下微波辐射的发射产生的相干辐射会在通常的约瑟夫森频率的一半发射。根据该分数Josephson辐射,我们为Majorana Qubits提出了一个微波读数方案。像往常一样,用于电路量子电动力学的典型测量值,拟议的读数实现了Majorana量子量子的量子非解析测量。在论文的最后一部分中,我们提出了一种新的方案,用于实施测量诱导的纠缠量之间的远程超导Qubit,这是量子通信所需的。通过检测单个光子,该光子通过一个马赫德尔的干涉测量设置,确定性的纠缠具有单发效率。该方案基本上依赖于量子位和光子之间的强耦合。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
对于任何电极配置,都可以建立表面电阻和表面电阻率之间的关系。了解电流密度对于理解这种关系非常有帮助。考虑如图 2 所示的两种材料样品。在恒定电压 U 下,两个样品均由相同材料制成,流过材料的电流量将不同。较厚的棒(样品 #1)比细棒(样品 #2)“更容易”导电。我们可以使用水管类比 - 在恒定水压下,直径越大的管道中每单位时间流过的水就越多。流密度(无论是水还是电流)是通过管道或材料样品单位面积的流量。表面积垂直于流动电流(或水)的方向。
a 波兰格但斯克大学理论物理和天体物理研究所,格但斯克 80-308,波兰 b 锡根大学自然科学与技术学院,Walter-Flex-Straße 3,锡根,57068,德国 c QSTAR、INO-CNR 和 LENS,Largo Enrico Fermi 2,佛罗伦萨,50125,意大利 d 马克斯普朗克量子光学研究所,加兴,85748,德国 e 路德维希马克西米利安大学物理学院,慕尼黑,80799,德国 f 慕尼黑量子科学与技术中心,慕尼黑,80799,德国 g 波兰格但斯克大学国际量子技术理论中心,格但斯克,80-308,波兰 h 柏林工业大学固体物理研究所,柏林,10623,德国 i 数学与物理学,厦门大学马来西亚分校,雪邦,43900,马来西亚 j MTA ATOMKI Lendület 量子关联研究组,核研究所,德布勒森,4001,匈牙利
I. 引言 如今,LiDAR(光探测和测距)被广泛用于检查大气的各种特性、自动驾驶以及测绘和地形等许多其他方面。如今,LiDAR 在自动驾驶方面的可能性正在高度发展,但如果我们考虑其他类型的交通,如远洋运输或一般的运输和导航,我们就会发现它还没有得到充分的开发和利用,无法满足更安全的运输需求。这个话题可能被忽视,因为水下使用存在局限性,与 LiDAR 在大气和地球表面的使用相比,这似乎导致了更多有关其发展的问题。本文讨论了如何使用 LiDAR 造福航运、导航、自主导航、当前天气测量和检测,并提出了一些建议。这项工作的范围是介绍 LiDAR 在航运中可以提供的多种用途,以及为深海海底和水下世界探测提出的整体解决方案。一些新的和不为人熟知的 LiDAR 用途可能会在许多方面改变未来,对此,我们进行了一番思考。我想强调一下 LiDAR 在海岸线保护、深海海底物种、动物、藻类和其他水生植物以及海绵生物分析方面可能发挥的作用。此外,其中一个有趣的应用是检测水的盐度水平和分析水下矿物的化学性质。稍后,我们将提到 LiDAR 的更多应用及其优势,这些应用可以为人类带来更多关于水下世界的知识。
•基准挑战CHAL-ABS2025-01-SR:预测平均固体尺寸,平均最大和最小隔离的NB和MO在细胞壁和细胞内部的NB和MO的质量分数,以及在AS-Buuguign微型结构中不包括氧化物的沉淀物的体积分数。预测在870°C的应力释放热处理1小时后,在微观结构中的沉淀物的体积分数(不包括氧化物)。 •基准挑战CHAL-BAMB2025-01-H:在细胞壁和细胞内部的NB和MO分别预测NB和MO的平均固定细胞大小,平均最大和最小隔离质量分数,以及在构造的微观结构中排除氧化物的沉淀物的体积分数。预测在1150°C均质热处理1小时后,在微观结构中的沉淀物的体积分数,不包括氧化物。
I. 引言 如今,LiDAR(光探测和测距)被广泛用于检查大气的各种特性、自动驾驶以及测绘和地形等许多其他方面。如今,LiDAR 在自动驾驶方面的可能性正在高度发展,但如果我们考虑其他类型的交通,如远洋运输或一般的运输和导航,我们就会发现它还没有得到充分的开发和利用,无法满足更安全的运输需求。这个话题可能被忽视,因为水下使用存在局限性,与 LiDAR 在大气和地球表面的使用相比,这似乎导致了更多有关其发展的问题。本文讨论了如何使用 LiDAR 造福航运、导航、自主导航、当前天气测量和检测,并提出了一些建议。这项工作的范围是介绍 LiDAR 在航运中可以提供的多种用途,以及为深海海底和水下世界探测提出的整体解决方案。一些新的和不为人熟知的 LiDAR 用途可能会在许多方面改变未来,对此,我们进行了一番思考。我想强调一下 LiDAR 在海岸线保护、深海海底物种、动物、藻类和其他水生植物以及海绵生物分析方面可能发挥的作用。此外,其中一个有趣的应用是检测水的盐度水平和分析水下矿物的化学性质。稍后,我们将提到 LiDAR 的更多应用及其优势,这些应用可以为人类带来更多关于水下世界的知识。
支持结构 WMO 会员 WMO 秘书处 气溶胶科学咨询组(SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目(GURME) 质量保证科学活动中心(QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心(WDC) 意大利伊斯普拉的气溶胶(WDCA)(EU) 日本的温室气体和其他痕量气体(WDCGG) 美国的降水化学(WDCPC) 俄罗斯的太阳辐射(WRDC) 挪威的表面臭氧(WDCSO) 加拿大的紫外线辐射和臭氧(WOUDC) WMO GAW 臭氧测绘中心(WO 3希腊
I. 引言 如今,LiDAR(光探测和测距)被广泛用于检查大气的各种特性、自动驾驶以及测绘和地形等许多其他方面。如今,LiDAR 在自动驾驶方面的可能性正在高度发展,但如果我们考虑其他类型的交通,如远洋运输或一般的运输和导航,我们就会发现它还没有得到充分的开发和利用,无法满足更安全的运输需求。这个话题可能被忽视,因为水下使用存在局限性,与 LiDAR 在大气和地球表面的使用相比,这似乎导致了更多有关其发展的问题。本文讨论了如何使用 LiDAR 造福航运、导航、自主导航、当前天气测量和检测,并提出了一些建议。这项工作的范围是介绍 LiDAR 在航运中可以提供的多种用途,以及为深海海底和水下世界探测提出的整体解决方案。一些新的和不为人熟知的 LiDAR 用途可能会在许多方面改变未来,对此,我们进行了一番思考。我想强调一下 LiDAR 在海岸线保护、深海海底物种、动物、藻类和其他水生植物以及海绵生物分析方面可能发挥的作用。此外,其中一个有趣的应用是检测水的盐度水平和分析水下矿物的化学性质。稍后,我们将提到 LiDAR 的更多应用及其优势,这些应用可以为人类带来更多关于水下世界的知识。
摘要。过滤后的雷利散射(FRS)是一种基于激光的诊断技术,用于非侵入性地量化光散发气体的各种热力学特性。FRS的骨干是瑞利散射光的分子过滤。这个概念最初是由大气激光雷达社区提出的,然后在1990年代初在航空航天研究领域采用。从那时起,FRS已成熟到一种多功能定量诊断工具中,并在反应和非反应环境中都在各种流动方案中发现了使用。这种采用可以归因于可以通过FRS获得的大量信息,包括气体密度,压力,温度,速度,物种组成,或者在某些情况下同时同时获得其中一些特性。本文回顾了恢复此类气体特性的FRS方法的当前状态。对雷利散射和光谱光线过滤的基础知识对于FRS实验的设计至关重要,我们首先要审查这些区域。随后,我们对使用FRS测量不同气体特性的实验设计策略,假设和数据还原方法进行了调查。我们以简短的讨论对实验不确定性和FRS的未来趋势进行了简短讨论。