获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:音乐和艺术的生成AI模型越来越复杂且难以理解。Exable AI(XAI)的领域旨在使人们更容易理解神经网络等复杂而不透明的AI模型。使生成AI模型更易于理解的一种方法是将少数具有语义上有意义的属性施加在一般的AI模型上。本文对影响的影响进行了系统的检查,即变异自动编码器模型的不同组合(MeasureVae和Eversarialvae),AI模型中潜在空间的配置(4至256个潜在维度)(从4到256个潜在维度),以及训练数据集(训练数据集(训练数据集)(爱尔兰民间,土耳其民间,经典和流行音乐)在2或4含义上有着2或4含义于音乐上的音乐表演,这是有意义的。迄今为止,在此类级别的细节级别上没有进行此类模型的系统比较。我们的发现表明,与对抗性属性具有更好的音乐属性独立性相比,Measurevae具有更好的重建性能。的结果表明,Measurevae能够通过相互可靠的音乐控制层面来创造音乐流派的音乐,并以低复杂性音乐(例如流行音乐)的表现最好。我们建议32或64个潜在的维度空间对于使用Measurevae跨流派产生音乐时的4个正则化尺寸是最佳的。我们的最终是对音乐的最新生成AI模型的配置的第一个详细比较,可用于帮助选择和配置AI模型,音乐功能和数据集,以实现更易于理解的音乐。