双叶机械主动脉瓣产生的非生理性流动模式与瓣膜置换术后的血栓栓塞密切相关。研究不同瓣叶形状如何影响此类瓣膜的流场特性有助于优化瓣叶设计,以改善血流动力学性能并减少术后并发症。本研究利用临床CT影像数据创建了真实的主动脉根部硅胶模型,建立了体外脉动流系统来模拟周期性血流。采用粒子图像测速技术捕捉直瓣叶和弯瓣叶双叶机械主动脉瓣下游周期性流场,分析瓣叶形状对速度分布、涡流动力学、粘性切应力(VSS)和雷诺切应力(RSS)的影响。结果表明弯曲瓣叶减少了对主动脉窦的冲击,减轻了高速度造成的内皮细胞损伤。弯曲瓣叶设计还能增加有效流通面积,防止血液停滞,降低凝血因子的局部浓度,从而降低血栓形成的风险。直瓣和弯瓣的最大VSS分别为1.93 N/m 2 和1.87 N/m 2 ,而RSS分别达到152 N/m 2 和118 N/m 2 。弯曲瓣叶可最大限度地减少湍流切应力对血细胞的影响,减少血小板活化并降低血栓栓塞的发生率。优化瓣叶曲率为增强双叶机械主动脉瓣的血流动力学性能提供了一种有希望的途径。弯曲设计也可能更适合老年患者或心脏射血能力降低的患者,从而改善手术效果和康复。
16:20 - 16:40GyörgyHegeds - Miskolc大学副教授,机床机械学院,机械工具部人工智能部和机械工程教育中的CAD系统人工教育和CAD系统中的CAD系统正在完全彻底改变机械工程学生的学习,发展,发展,开发,创新,并创新。 自动化的AlgortIHMS支持AI驱动的CAD工具的支持可以改善该过程,从而使学生更准确地创建复杂的设计。 这种智能支持有助于AI驱动的CAD工具简化了设计过程,并为学生更准确地生产了复杂的设计。 实现生成设计,实时错误检测和自动化优化,以鼓励创造力和解决问题的技能,可帮助学生更好地内化工程概念。 最终,这种集成将使学生能够通过连接理论和实际实施来学习更多复杂的学科,例如自适应建模和基于机器学习的设计分析。 本文介绍了近年来在人工智能支持的CAD系统教育方面所经历的结果,该系统变得越来越强大。 它还展现了未来预期的机会以及教育工作者接受和应用人工智能所需的范式转变。16:20 - 16:40GyörgyHegeds - Miskolc大学副教授,机床机械学院,机械工具部人工智能部和机械工程教育中的CAD系统人工教育和CAD系统中的CAD系统正在完全彻底改变机械工程学生的学习,发展,发展,开发,创新,并创新。自动化的AlgortIHMS支持AI驱动的CAD工具的支持可以改善该过程,从而使学生更准确地创建复杂的设计。这种智能支持有助于AI驱动的CAD工具简化了设计过程,并为学生更准确地生产了复杂的设计。实现生成设计,实时错误检测和自动化优化,以鼓励创造力和解决问题的技能,可帮助学生更好地内化工程概念。最终,这种集成将使学生能够通过连接理论和实际实施来学习更多复杂的学科,例如自适应建模和基于机器学习的设计分析。本文介绍了近年来在人工智能支持的CAD系统教育方面所经历的结果,该系统变得越来越强大。它还展现了未来预期的机会以及教育工作者接受和应用人工智能所需的范式转变。
Sainbiose单元(SanténierieBiologie Saint-Etienne)结合了Jean Monnet大学,矿山St Etienne,法国血液建立和圣泰恩大学医院的研究人员,重点是骨关注骨关节生物学,软组织机械博物学,血液学和血液学,血液学和血小板。它拥有48位永久研究人员和37名技术人员,分为两支团队,并培训58位博士生。在过去的五年中,它制作了100份年度出版物,提交了6份专利,开发了3种软件工具,并启动了2家初创公司。“软组织生物力学”组由PR领导。S. avril,重点介绍了有关生物组织机械行为及其与医疗设备的相互作用的数值,临床和实验研究。实验室包括实验设备,例如单轴或双轴拉伸机器,光场测量工具和显微镜设备。他们的研究得到了强大的学术网络的支持,无论是在国内还是国际上,他们都会与Thuasne,Sigvaris和Medtronic等公司定期合作。
摘要拓扑优化已成为机械工程的关键技术,可提高结构效率和材料利用率。此概念模型提出了一个框架,该框架将高级拓扑优化方法与计算设计工具集成在一起,以优化给定设计空间内的材料分布。主要目标是最大程度地提高性能,同时最大程度地减少材料使用情况,这对于降低成本和提高制造和建设的可持续性至关重要。提出的模型强调了优化算法的应用,例如遗传算法,模拟退火和粒子群优化,并与有限元分析(FEA)一起探索各种设计配置。通过系统地删除不必要的材料并加强关键的结构区域,该模型可确保创建轻质但强大的组成部分。此外,还合并了多目标优化,以平衡竞争目标,例如在保持结构完整性,耐用性和安全标准的同时最大程度地减少重量。该模型的关键组成部分是它与添加剂制造(AM)技术集成,从而使传统制造方法无法实现的复杂几何形状创建复杂的几何形状。这种协同作用允许实现优化的结构,这些结构既具有物质效率又具有成本效益。此外,该模型还结合了灵敏度分析,以评估材料特性和外部加载条件的变化如何影响整体性能,
生物印刷是一项蓬勃发展的技术,在组织工程和再生医学中有许多应用。然而,大多数用于生物打印的生物材料取决于使用牺牲浴和/或非生理刺激的使用。可打印的生物材料在其组成和机械性能方面通常也缺乏可调节性。为了应对这些挑战,作者介绍了一种新的生物材料概念,他们称其为“可单击的动态生物联系”。这些生物学使用可以打印的动态水凝胶,并通过点击反应进行化学修饰,以在打印后使用印刷对象的物理和生化特性。特别是使用透明质酸(HA)作为感兴趣的聚合物,研究者研究了使用基于富酯的基于硼酸酯的交联反应来产生可打印和细胞增强的动态水凝胶,从而允许生物涂纸。通过生物正交点击部分对产生的动态生物学进行化学修饰,以允许使用带有互补点击功能的分子进行各种后印刷修饰。作为概念的证明,作者执行了各种后打印的修饰,包括调整聚合物组成(例如HA,HA,硫酸软骨素和明胶)和Sti效应,以及通过粘附性肽固定化(即,RGD peptide)来促进细胞粘附。结果还表明,这些修改可以在时间和空间中控制,为4D生物打印应用铺平了道路。
Daniel Asmar 是贝鲁特美国大学机械工程系副教授。Daniel 于 2006 年获得滑铁卢大学系统设计工程博士学位。Daniel 的研究领域是机器人技术和计算机视觉。他对视觉感知、自主机器人导航和测绘、环境表示和识别、考古学中的增强技术以及计算机视觉中的分割方法感兴趣。他在这些领域的期刊和会议论文集上发表了一百多篇论文。自 2010 年以来,Daniel 对数字文化遗产的兴趣日益浓厚,他利用自己在计算机科学方面的知识来帮助解决该领域的问题。2010 年至 2014 年,他领导了 IAM 项目,2019 年至 2022 年,他领导了 MED GAIMS,这两个项目均由欧盟资助,并在其中开发了文化遗产中的扩展现实和游戏化应用。
研究助理(男/女/其他)——招聘广告编号 14-E/2025,作为第三方资助项目的一部分临时招聘。 薪酬:薪酬组 13 TV-L 职位范围:1.0 FTE(40 小时/周;可以兼职) 时间限制:2027 年 3 月 30 日(正在寻求延长至 36 或 48 个月) 在机械运行技术和设备技术研究所,机械电池回收工作正在多个项目中开展。 这涉及生产电极涂层浓缩物,即所谓的黑块,然后对其进行化学浸出,即在后续步骤中进行湿法冶金处理。 在此背景下,黑块的过滤性能是后续工艺链设计的关键因素。作为研究项目的一部分,现在需要量化来自不同机械预处理工艺的各种黑色物质的过滤特性,并优化过滤和清洗工艺的产量。以这种方式确定的结构-工艺关系对电池回收工艺链的数字化做出了重要贡献。该研究课题使来自科学和工业领域的各种合作伙伴能够进行广泛的合作。
塑料产品已成为Modern Society的组成部分。他们的实施从Ba-SIC消费品到航空航天或汽车行业的高级应用程序。旁边的多功能性,其受欢迎程度的原因在于特征,例如具有高度成本有效,可大量生产和轻巧的重量。这些好处,包括对塑料产品的高度需求。尽管如此,可以说塑料产品会带来挑战,尤其是在考虑其环境范围时。质量产品(尤其是一次性塑料)的便利性和广泛的可用性直接影响环境污染,因为质量废物通常因在垃圾填埋场或海洋中处置而造成不雄厚的污水[1]。由于绝大多数聚物不被认为是可生物降解的,因此痕迹仍然导致自然栖息地的污染。随着气候变化和环境污染的后果越来越明显,意识以及采取行动更具可疑的需求已成为社会,政治和现代工程师的优先事项。由于目前的塑料产品的完全放弃似乎不是现实的选择,因此已经探索了其他达到循环经济的方法,最重要的是回收[2]。随着回收的进一步整合到塑料的生命周期中,允许对废物进行更积极的管理,同时为进一步的应用提供新的材料。此外,还出现了用于处理再生材料的新企业。添加剂制造(也称为3D打印)已成为一种可能适合处理再生聚合物的制造系统。3D打印技术已经被认为是物质上有效的,并且可以在多个工业和用户组中找到应用。目前,研究人员Primar-