简介 1912 年,人们偶然发现了苯巴比妥的抗惊厥特性,这为现代癫痫药物治疗奠定了基础。随后的 70 年里,苯妥英、乙琥胺、卡马西平、丙戊酸钠和一系列苯二氮卓类药物相继问世。这些药物被统称为“公认的”抗癫痫药物 (AED)。20 世纪 80 年代和 90 年代,癫痫药物的协同开发已导致(迄今为止)16 种新药物被批准作为难控成人和/或儿童癫痫的辅助治疗,其中一些药物可作为新诊断患者的单一疗法。这些药物被统称为“现代”AED。在这一前所未有的药物开发时期,我们对抗癫痫药物如何在细胞水平上发挥作用的理解也取得了长足的进步。抗癫痫药物既不能预防也不能治疗,仅用于控制症状(即抑制癫痫发作)。反复发作的癫痫是神经系统间歇性和过度兴奋的表现,虽然目前市场上销售的抗癫痫药物的药理学细节仍未完全阐明,但这些药物基本上可以纠正神经元兴奋和抑制之间的平衡。人们认识到三种主要机制:调节电压门控离子通道;增强γ-氨基丁酸 (GABA) 介导的抑制性神经传递;减弱谷氨酸介导的兴奋性神经传递。表 1 重点介绍了目前可用的抗癫痫药物的主要药理学靶点,并在下文进一步讨论。当前抗癫痫药物靶点电压门控钠通道电压门控钠通道负责神经细胞膜的去极化和动作电位在神经元细胞表面的传导。它们在整个神经元膜、树突、胞体、轴突和神经末梢上表达。在产生动作电位的轴突起始段 (AIS) 中表达密度最高。钠通道属于电压门控通道超家族,由多个蛋白质亚基组成,在膜上形成离子选择性孔。天然钠通道由单个 α 亚基蛋白组成,该蛋白包含成孔区和电压传感器,与一个或多个辅助 β 亚基蛋白相关,这些辅助 β 亚基蛋白可以改变 α 亚基的功能,但对基本通道活动并非必不可少。哺乳动物脑中表达四种主要的钠通道 α 亚基基因,分别表示为 SCN1A、SCN2A、SCN3A 和 SCN8A,它们分别编码通道 Na v 1.1、Na v 1.2、Na v 1.3 和 Na v 1.6。这些通道在神经系统中的表达存在差异。Na v 1。3 的表达主要局限于发育早期阶段,而 Na v 1.1 是抑制性中间神经元的主要钠通道,Na v 1.2 和 Na v 1.6 在主要兴奋性神经元的 AIS 中表达。Na v 1.2 似乎
免疫检查点阻断 (ICB) 可在部分癌症患者中诱导显著且持久的反应。然而,大多数患者表现出对 ICB 的原发性或获得性耐药性。这种耐药性源于肿瘤微环境 (TME) 内多种动态机制的复杂相互作用。这些机制包括遗传、表观遗传和代谢改变,这些改变可阻止 T 细胞运输到肿瘤部位、诱导免疫细胞功能障碍、干扰抗原呈递、促进共抑制分子表达增强以及促进免疫攻击后的肿瘤存活。TME 通过免疫抑制、调节代谢物和异常资源消耗形成免疫抑制网络,从而加剧 ICB 耐药性。最后,患者的生活方式因素(包括肥胖和微生物组组成)会影响 ICB 耐药性。了解导致 ICB 耐药性的细胞、分子和环境因素的异质性对于开发增强临床反应的有针对性的治疗干预措施至关重要。本综合概述重点介绍了可能在临床上可转化的 ICB 耐药性的关键机制。
序言 航空航天机制研讨会 (AMS) 为那些积极参与航空航天机制设计、生产和使用的人士提供了一个独特的论坛。主要重点是报告与新机制的开发和飞行认证相关的问题和解决方案。由机制教育协会赞助和组织,主办 AMS 的责任由美国国家航空航天局和洛克希德马丁太空公司共同承担。第 46 届 AMS 原定于德克萨斯州休斯顿举行,但不幸的是,全球 COVID-19 大流行导致我们于 2022 年 5 月 11 日至 13 日以虚拟方式举行研讨会。发布这些会议记录是为了向机制社区提供这些经验教训和机制设计信息。主题包括仪器机制、释放装置、传感器、摩擦学、执行器和立方体卫星机制。本次研讨会的高质量是许多人辛勤工作的结果,我们非常感谢他们的努力。这延伸到代表八个 NASA 现场中心、洛克希德马丁太空公司和欧洲航天局的研讨会组织委员会的志愿者成员。我们还向会议主席、作者,特别是负责研讨会安排和随后取消以及出版这些会议记录的 JSC 人员表示感谢。还要向负责 AMS 年度管理(包括论文处理)的研讨会执行委员会表示诚挚的感谢。本出版物中使用的制造商商品名并不构成美国国家航空航天局对此类产品或制造商的明示或暗示的官方认可。
摘要:本文对与电池相关的性能降低进行了批判性分析,特别是焦点是锂离子(Li-ion)技术。在此框架内,它阐明了四种主要的机制,这些机制会随着时间的推移逐渐下降的电池性能逐渐下降:(1)固体锂的沉积; (2)被动膜的形成; (3)裂缝的发展和传播; (4)电解质内活性材料的溶解。在整个电池系统的更广泛背景下,全面研究了这些机制中的每种机制,突出了各种过程中各个过程之间的复杂相互作用。讨论强调了电池性能的退化不仅是一种线性现象,而且是多种因素的复杂相互作用,无论是统计和随机的。这种固有的复杂性提出了对电池行为的准确建模和在其操作寿命中的预测的重大挑战。通过对这些降解机制进行彻底探索,本文旨在增强对导致电池性能降低的基础过程的理解,从而为电动汽车电池技术领域的未来研究和开发工作提供了信息。这些发现还强调了需要充分捕获电池降解的多方面性质的复杂建模方法的必要性。此类模型将在本文的第二部分中讨论。钥匙词:电动,车辆,电池。但是,复杂和1.引言电动汽车(EV)的快速开发已导致对电池性能的监测和管理进行了重大研究,尤其是在估计充电状态(SOC)和评估电池降解方面。这些参数对于确保电池系统的效率,寿命和安全性至关重要。充电状态提供了有关电池剩余能力的基本信息,而降解评估有助于预测其寿命和随着时间的推移的寿命和性能。对SOC和降解的准确估计对于电池管理系统(BMS)是必不可少的,并且电动移动性和能源存储系统的更广泛成功。
简介:机器翻译是一个具有重要科学和实际意义的现代自然语言处理研究领域。在实践中,语言的变化,语义知识的局限性以及缺乏平行语言资源限制了机器翻译的发展。目标:本文旨在避免在学习过程中复制神经网络,并提高具有有限资源的复杂神经网络机器翻译模型的能力。方法:研究源语言中的文本材料,并使用合适的文本材料表示模型来表达复杂,高级和抽象的语义信息。然后,基于书面数据和算法的控制开发了一个更有效的神经网络机器翻译集成模型。结果:基于转移学习以标准化有限的神经网络模型,必须将数据挖掘应用于复杂的神经网络机器翻译系统。结论:基于迁移训练的基于神经网络的嵌入式机器翻译系统需要少量标记的样品,以提高系统的渗透性。但是,这种自适应迁移学习区域方法可以很容易地导致神经网络翻译模型中的过度学习问题,从而避免了学习过程中过度的对应关系,并提高了具有有限的神经网络资源的翻译模型的概括能力。
合作是地球生命的核心。她将生物,家庭和社会焊接在一起。研究合作最广泛的工具之一是游戏理论。它结合了理论和实验方法。这使其可以解释广泛的社会行为,包括合作。在这项工作中,可以研究理论和实验方法如何帮助解释各种机制和合作的好处。如果个人知识给出了未来内部互动的援助最高概率,那么他们会从维持其合作关系中获利。这些重复的互动使个人能够交流思想并建立对双方有益的关系,每个人都从中汲取了利益。第2章始于理论和实验文献的概述,这在我们对直接互惠的理解中表明了一些重要的差距。特别是本章表明,理论上预测了行为投诉的策略经验障碍表明。这样做的原因可能是,大多数这些模型和实验都孤立地寻找互动,而人类的社会生活中的大多数都更加复杂。因此,在第3章中,在一个多游戏环境中检查了直接互惠,其中个人与相同或各种合作伙伴进行了两次GLE互动。表明,如果这在战略上是明智的,那么个人能够相互结合,并且认知扭曲对于精确模拟人类行为至关重要。在第4章中,开发了另一种相互的策略,这不是基于游戏过程的明确和精确架设,而是基于行为实验表明,人类玩家的认知技能更现实。最后两章也能够为合作伙伴解释各种社会行为。在文献中,检查了如何通过不同类型的适应症来表明合作意愿。已经表明,过去的行为,无论是直接合作还是合作,都是愿意合作的可靠预测指标,也是第三方认为的。这种行为的一个例子是根据道德价值观行动。第五章节以这种知识为基础,并建立了主要行为的新理论,以便使用信号模型。它显示了道德原则的一致依从性如何在他的信任度上提高个人的声誉,并使他成为首选合作伙伴。鉴于主要行为的深远社会优势,游戏理论和进化原理可以表明合作伙伴选择的动态如何导致以下事实:在个人中,显然是未经调整的行为。
实现此类突破的主要障碍之一是对Li-S电池运行背后的机制缺乏基本理解。特别是,如果形成的多硫化物物种是可逆的,以及所有这些过程如何取决于电解质的类型和量以及活性材料的量,则尚不清楚什么是电荷和排放机制。因此,在各种条件下对Li-S电池进行操作的表征迫切需要确定充电,放电和停用过程的基本方面。
癌症是一种由基因突变,表观遗传变化以及与免疫微环境不断发展的相互作用驱动的多方面疾病(1)。肿瘤细胞通常会发展出逃避免疫检测并促进免疫抑制的机制(2)。尽管最近在癌症免疫疗法方面取得了突破,但可以预测治疗结果并提供更多靶向治疗的新型生物标志物和机制的鉴定仍然是一个显着的挑战(3)。肿瘤免疫联系封装了肿瘤细胞与各种免疫细胞之间的相互作用,包括T细胞,巨噬细胞,树突状细胞和天然杀伤细胞(4)。这些相互作用对于确定免疫系统识别和消除肿瘤细胞的能力至关重要。这个复杂的生态系统提供了治疗机会和挑战。
注意:本小册子中描述的信息和建议不可能涵盖产品的每种应用或使用产品的条件变化。这里的建议基于制造商的经验,研究和测试。他们被认为是准确的,但没有做出,明示或暗示的保证。此外,本文包含的规格都是代表我们当前生产的名义。所描述的产品可能会发生变化。请随时与少尉 - 贝克福德航空航天公司联系,进行验证。没有保证或负债:本文所述的产品是“原样”出售的,并且没有任何保证或保证,明示或暗示的,或者由法律或以其他方式引起的任何保证或隐含的内容,而不受限制的任何保证,对适销性或适合特定目的的保证。买方和用户同意进一步释放和解雇卖方从购买或使用本文所述的任何产品产生的任何责任中,无论是卖方的过失还是基于严格的产品责任或根据赔偿或贡献的原则造成这种责任。内容©2021-insign-Bickford Aerospace&Defense Company,Simsbury,CT 06070,U.S.A.
Rachael Natrajan博士领导的功能性基因组学实验室是一个多学科动态研究小组,其使命是为抗乳腺癌的新治疗策略制定耐药性护理疗法的新治疗策略。实验室使用艺术分子分析的状态,例如在整个疾病进展的患者样本上进行单细胞测序和空间基因组分析,以了解乳腺癌的分子进化以及对靶向疗法的反应。与患者衍生,合成性和GEMM模型中的分子条形码策略一起,在体外和体内和候选生物标志物或治疗选择中评估了机理假设,以临时测试,以告知概念临床试验或药物发现计划的设计证明。We have made novel advances into the understanding of genomic alterations both at bulk and single cell level and their impact on breast cancer in different contexts and how to target these effectively (including Bland et al Nature Genetics 2023 PMID: 37524790; Peck et al Cancer Res 2021 PMID:33509944; Inayatullah et al PMID: 38480932 PMID: 24240700; Natrajan等人PLOS Medicine 2015 PMID:2688177,Maguire等人2016 PMID:27512948;