Revolutionising Medical Imaging with Computer Vision and Artificial Intelligence Edited by Seema Bhatnagar, Priyanka Narad, Rajashree Das and Debarati Paul This book first published 2024 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2024年,Seema Bhatnagar,Priyanka Narad,Rajashree Das,Debarati Paul和本书保留的所有权利。未经版权所有者事先许可,以任何形式或以任何形式或以任何形式(任何形式),以任何形式或以任何形式的方式,以任何形式或以任何形式)复制了本书的一部分,以任何形式或以任何形式或以任何方式传输。ISBN:978-1-0364-1061-2 ISBN(电子书):978-1-0364-1062-9ISBN:978-1-0364-1061-2 ISBN(电子书):978-1-0364-1062-9
仿射配准在全面的医学图像配准流程中不可或缺。然而,只有少数研究关注快速而鲁棒的仿射配准算法。这些研究中大多数利用卷积神经网络(CNN)来学习联合仿射和非参数配准,而对仿射子网络的独立性能探索较少。此外,现有的基于 CNN 的仿射配准方法要么关注局部错位,要么关注输入的全局方向和位置来预测仿射变换矩阵,这些方法对空间初始化很敏感,并且除了训练数据集之外表现出有限的通用性。在本文中,我们提出了一种快速而鲁棒的基于学习的算法,即粗到精视觉变换器(C2FViT),用于 3D 仿射医学图像配准。我们的方法自然地利用了卷积视觉变换器的全局连通性和局部性以及多分辨率策略来学习全局仿射配准。我们对 3D 脑图谱配准和模板匹配归一化方法进行了评估。综合结果表明,我们的方法在配准精度、稳健性和通用性方面优于现有的基于 CNN 的仿射配准方法,同时保留了基于学习的方法的运行时优势。源代码可在 https://github.com/cwmok/C2FViT 上找到。
所有 3 周龄以上且之前未接种过 Lambivac 疫苗的绵羊必须接受两次注射,间隔 4-6 周,并在风险期开始前完成。此后,它们应在确定的风险期前 2-3 周接受加强注射,间隔不超过 12 个月。对于成年繁殖母羊,这些年度加强注射应在产羔前期(产羔前 4-6 周)进行,以便通过初乳对羔羊进行被动保护。
该文档计划于20122年7月26日在联邦公报上发布,并在Funel.gov/d/2022-15372上在线提供,并在govinfo.gov
5.1. 加强生态系统的必要性 26 5.2. 组织医疗价值旅行促进者 26 5.3. 为牙科诊所制定 NABH 标准和认证 27 5.4. 远程医疗作为重点领域 27 5.5. 健康保险可携性 27 5.6. 为外国患者开发医疗区 28 5.7. 开发特殊健康旅游区 28 5.8. 组织医疗服务提供商 28
由于数字化转型彻底彻底改变了行业并改善了我们的日常生活,现代世界越来越相互联系。在这个年龄段,在用户便利和安全性之间达到理想的平衡可能对组织具有挑战性。这是访问控制系统,尤其是移动凭证访问控制的地方。传统方法协助我们保护研究设施并确保数据中心,但许多技术突破已经引入了新的安全时代。移动凭证访问控制是一种尖端,有效的,非常安全的替代传统方法,因为它利用智能手机和其他移动设备来提供一种灵活而有效的方式来控制对物理空间的访问。它利用当今智能手机(例如NFC和蓝牙低能(BLE))中发现的尖端技术,通过提供手机中存储的安全访问凭证或数字键来提高安全性,以向访问控制读取器。该技术通过与当前的安全系统无缝集成,一种更方便,更安全的方法来管理访问。移动凭证访问控制在海湾合作委员会地区变得越来越受欢迎,在海湾合作委员会地区,政府和公司在数字化转型方面具有很高的溢价。企业越来越多地使用数字解决方案来提高安全性并因移动互联网采用率不断提高和专注于创新而优化其运营。在海湾合作委员会中,国家在中东和北非地区的移动互联网渗透率最高,预计
在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。
图和表列表4 1。简介5 1.1方法和方法6 1.2研究框架7 1.3主题的相关性7 2。背景8 2.1机器与艺术家之间的协作演变9 2.2 AI ART的概述数字媒体11 3。文学评论13 3.1 GAN和创造力13 3.2非人类和艺术作品16 3.3 AI生成的与人类艺术品。对AI的负面偏见17 3.4艺术家关系关系将如何发展?18 4。理论框架20 4.1。演员网络理论(ANT)作为理论方法20 4.1.1艺术过程中的Actor-Network理论(ANT)22 4.2。媒体传播23 5。研究方法25 5.1话语分析25 5.2抽样27 5.3样本分类29 5.4研究范例31 6。道德考虑33 7。研究人员的职位34 8。分析35 8.1。作者身份和创造力37 8.2独创性和真实性39 8.3关于使用公共领域中使用代码的道德方式40 8.4第41条81 8.5技术神话42 9.讨论43 9.1数字媒体中AI艺术的表示44 9.2修辞策略46 9.3 POWER DYNAGIC 47 10。限制和进一步的步骤49 11.结论50参考文献52
背景:社交媒体成瘾的抑郁与严重程度之间的关系可能是双向的。尽管如此,目前的研究已经解决了普通人群中量表的抑郁评分,而不是评估重度抑郁症患者的这种关系。尽管确认了社交媒体成瘾与情绪智力的负面关系,但尚未调查这种主要抑郁症中这种关系的存在。因此,我们研究的目的是评估社交媒体成瘾的严重性和主要抑郁症的情绪智力。方法:这项研究是在KARS HARAKANI州立医院精神病学院门诊诊所的158名年龄在18至56岁之间的参与者进行的。社会人口统计学数据表涉及年龄,性别,婚姻状况,教育水平和参与者的就业状况,贝克抑郁量库存,酒吧的情感商清单和社交媒体成瘾量表已实施给参与者。结果:在社交媒体成瘾量表评分方面,创建该小组无上瘾和中等上瘾,可以观察到,中等沉重的群体的情绪智力明显较低,抑郁评分较高(p <.001)。此外,社交媒体成瘾的严重程度与抑郁评分和情绪智力评分有负相关关系(r = 0.353,p <.001; r = - 0.376,p <.001)。结论:主要抑郁症的情绪智力与社交媒体成瘾的抑郁水平和严重程度有关。干预措施,即情绪智能技能培训,对于上述患者可能是实用的。