正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
大规模视觉语言预训练模型的最新进展已在自然图像领域中的零样本/少样本异常检测方面取得了重大进展。然而,自然图像和医学图像之间巨大的领域差异限制了这些方法在医学异常检测中的有效性。本文介绍了一种新颖的轻量级多级自适应和比较框架,以重新利用 CLIP 模型进行医学异常检测。我们的方法将多个残差适配器集成到预训练的视觉编码器中,从而实现不同级别视觉特征的逐步增强。这种多级自适应由多级、逐像素的视觉语言特征对齐损失函数引导,将模型的重点从自然图像中的对象语义重新校准到医学图像中的异常识别。调整后的特征在各种医学数据类型中表现出更好的泛化能力,即使在模型在训练期间遇到看不见的医学模态和解剖区域的零样本场景中也是如此。我们在医学异常检测基准上进行的实验表明,我们的方法明显优于当前最先进的模型,在零样本和少样本设置下,异常分类的平均 AUC 改进分别为 6.24% 和 7.33%,异常分割的平均 AUC 改进分别为 2.03% 和 2.37%。源代码可从以下网址获取:https://github.com/MediaBrain-SJTU/MVFA-AD
HOSA/志愿服务:鼓励学生加入 HOSA。HOSA 是美国教育部和 ACTE 健康科学教育 (HSE) 部门认可的全国性学生组织。HOSA 的双重使命是促进医疗保健行业的职业机会,并加强向所有人提供优质医疗保健。HOSA 的目标是鼓励所有健康科学教师和学生加入并积极参与 HSE-HOSA 合作。任何目前就读于荷兰医学高中的学生均可成为会员,不分年龄、性别、种族、肤色、宗教信仰、国籍或残疾。所有缴纳会费的会员都是荷兰 HOSA 的一部分,然后分为分会以参加竞赛活动。鼓励 HOSA 会员参加当地、地区和州级活动,并自愿参加每学期为 HOSA 和荷兰学生提供的众多机会。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
我们将提供空间供您展示您的产品。如有任何疑问或想安排会议,请随时通过 pjbinu@cdac.in 与我们联系,Binu PJ,组织秘书,科学家 E/联合主任,CDAC Trivandrum 健康技术组,电话:9496236198。
'最初特权(初步任命)'续约(重新任命,在2年专业周期中)'修改特权(要求以外的任何其他特权要求以外的任何其他特权)基础教育:MD或进行最少的正规培训:成功完成ACGME或AOA ACGME或AOA-ACGME或AOA-ACGME或AOA-ACGME或AOA-ACERADENIDENTICE培训,以进一步培训,以进一步的进度完成了进度的内部医学培训或内部医学上的进度或内部医学上的进度或血液学/医学肿瘤学综合研究金。当前的专科认证或积极参与检查过程(在培训完成后的5年内获得认证),从而导致ABIM或ABIM或医学肿瘤学的双重认证或ABIM或医学肿瘤学的双重认证。
应在规范和数据表中给出单元格的标称电压。这可能是使用前的近似开路电压,尤其是对于原代细胞。开路电压是没有外部负载的电压。应使用高输入阻抗(最低1MΩ)电压计进行开路电压测量值。或者,可以引用次级电池的标称电池电压为排放范围的最大和最小电压之间的平均开路电压。应指定电压测量条件(尤其是温度)。可以在相关标准标准中找到标准细胞的标称细胞电压(例如,非水性原代细胞的IEC 60086-1)。电池和电池供应商可以提供此信息的单元或电池数据表。
摘要。视觉语言预处理(VLP)模型已在众多计算机视觉应用中被证明。在本文中,我们基于图像扫描和电子健康记录中的文本介绍,为医疗领域开发VLP模型,以促进计算机辅助诊断(CAD)。为了实现这一目标,我们介绍了MedBlip,这是一种轻巧的CAD系统,该系统启动了从架子冻结的预训练的图像编码器和大型语言模型中启动VLP。我们合并了一个MEDQFormer模块,以弥合3D医学图像和2D预训练的图像编码器和语言模型之间的差距。为了评估MEDBLIP的有效性,我们从五个公共阿尔茨海默氏病(AD)数据集中收集了30,000多个图像量:ADNI,NACC,OASIS,OASIS,AIBL和MIRIAD。在这个大规模的广告集中,我们的模型在健康,轻度认知障碍(MCI)和AD主题的零摄像分类中表现出了令人印象深刻的表现,并且还显示了其在M3D-VQA-AD数据集中的医学视觉问题An-Swering(VQA)中的能力。代码和预训练模型可在https://github.com/qybc/medblip上找到。
背景:2型糖尿病(T2DM)是极大地影响菲律宾家庭的主要慢性病之一。药物不遵守是为患有这种情况的个体实现最佳治疗结果的重大挑战。目的:这项研究确定了药物依从性的水平,并探讨了在宿雾南方医学中心(CSMC)家庭医学门诊诊所的T2DM患者不存在的相关因素。方法:从8月至2023年10月,在CSMC家庭医学门诊诊所进行了一项横断面研究。采用了一份自我管理的问卷,分为三个不遵守领域。的含义,频率和百分比用于分析依从性,社会人口统计学和临床因素的水平。逻辑回归分析用于确定因素与药物不遵守的关联。结果:共有69名参与者。总体而言,部分遵守T2DM药物。在与成本相关的不遵循(CRNA)结构域中,部分依从性(39.1%)存在很高的患病率。的因素显示出非依从性不足增加的因素包括年龄(AOR 1.363,95%CI 0.345-5.386),女性(AOR 1.544,95%CI 0.386-6.176),低收入(AOR 1.05,95%CI 0.352-3.135%),1.135%的频率(AOR 1.05%) CI 0.44-4.664),T2DM的持续时间不到10年(AOR 1.99,95%CI 0.46-8.637)。结论:对糖尿病药物的依从性可能会受到药物成本和财务状况的影响,这反映在总体部分依从性,CRNA领域中部分依从性的高度流行以及不遵守低收入与低收入的优势增加。应该进行更多的研究,以调查对糖尿病药物(例如糖尿病知识,患者的自我效能感和医疗保健提供者沟通)不遵守的其他可能因素。