根据《食品和药物法规》,辉瑞-biontech comirnaty在加拿大被授权为5至11岁(10 mcg剂量)和12岁及以上的人(30 MCG剂量)的主要系列(MCG剂量),促进剂量的pfizer-Biontech comirnaty(30 MCG剂量)(30岁的MCG剂量)为年龄较大的年龄较大,至少为年龄较大的人,至少是六个月的授权。4,28 Moderna Spikevax在加拿大被授权为6至11岁(50 MCG剂量)和12岁以上(100 MCG剂量)的个人,并在完成其初级疫苗系列后至少为18岁的个人和至少六个月的个人授权的Moderna Spikevax(50 MCG剂量)促进剂量。29在食品和药物法规下,Novavax Nuvaxovid被授权用作成年18岁及以上的成年人的主要Covid-19疫苗系列,而成年人Medicago Covifenz在成年人中年龄18-64岁,作为原发性疫苗系列。4,25,30,31
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的基因组编辑已发展成为一种强大的工具,广泛应用于植物物种,以诱导基因组编辑,以分析基因功能和作物改良。CRISPR/Cas9 是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA (sgRNA) 组成。CRISPR/Cas9 系统使作物的基因组编辑更加准确和高效。在这篇综述中,我们总结了 CRISPR/Cas9 技术在植物基因组编辑中的进展及其在饲料作物中的应用。我们简要描述了 CRISPR/Cas9 技术在植物基因组编辑中的发展。我们评估了 CRISPR/Cas9 介导的定点诱变在各种饲料作物中的进展,包括苜蓿、蒺藜苜蓿、大麦、高粱、谷子和黍。讨论了 CRISPR/Cas9 在饲料育种中的潜力和挑战。
联合基因组研究所(JGI)有一个令人兴奋的博士后机会,可以参与旨在了解其最基本水平的复杂植物 - 微生物相互作用的研究。JGI在推动协作科学方面有助于更好地了解植物微生物群落。与包括本杰明·科尔(Benjamin Cole),亨里克·谢勒(Henrik Scheller),阿克塞尔·维斯特(Axel Visel),黛安·迪克尔(Diane Dickel),罗南·奥马利(Ronan O'Malley)在内的团体进行了协调,选定的候选人将利用空间分辨的单细胞表征策略,以更好地理解定植微生物的植物组织和细胞类型。候选人将使用已建立的模型物种(例如拟南芥,木baracypodium distachyon,Medicago truncatula)和已知的植物殖民化微生物物种,研究了植物 - 微生物相互作用的各个方面,包括定植,生长促进以及对碳序列化的影响。这些努力最终将激发生物能源作物改善的生物工程策略。该项目将利用JGI的各种基于序列的科学和计算能力,以及与劳伦斯·伯克利实验室,联合生物能源研究所以及外部团体的科学家的新或现有合作。该职位将位于劳伦斯·伯克利实验室校园的全新研究机构综合基因组大楼。特定职责:
田间试验中要研究的转基因植物是春大麦(Hordeum vulgare)品种 Golden Promise,其中参与感知和定植的基因之一已通过 CRISPR/Cas9 系统丧失功能或通过过度表达进行修改。该研究旨在进行田间试验,以检查 AMF 接种对低磷和富磷土壤中共生途径基因编辑和过表达基因修饰的春大麦品种 Golden Promise 的生物量和产量的影响。大麦品种 Golden Promise 的六个基因,即 SYMRK 、 CCamK 、 Cyclops 、 RAM1 、 NSP1 和 NSP2 已使用 CRISPR-Cas9 介导的基因编辑系统分别进行编辑。在实验室条件下,这些基因的基因编辑导致 AMF 定植失败或显著减少。此外,其中一个基因,即大麦NSP2 (HvNSP2) 及其来自蒺藜苜蓿 (MtNSP2) 的直系同源物,通过过度表达 (OX) 进行修改,从而促进了实验室环境中 AMF 的定植。
摘要:豆科植物能够与土壤细菌(即根瘤菌)建立共生关系。豆科植物与根瘤菌的共生关系会形成共生根瘤,而根瘤菌会固定大气中的氮。宿主植物会控制共生根瘤的数量以满足其氮需求。研究表明,根部在接种根瘤菌和/或硝酸盐后产生的 CLE(CLAVATA3/胚胎周围区域)肽可以控制共生根瘤的数量。此前,研究发现,在蒺藜苜蓿中,MtCLE35 基因会受到根瘤菌和硝酸盐处理的上调,当过表达时,会系统性地抑制根瘤形成。在本研究中,我们获得了几个使用 CRISPR/Cas9 介导系统突变 MtCLE35 基因的敲除系。与野生型植物相比,敲除 MtCLE35 基因的 M. truncatula 品系在硝酸盐存在的情况下产生的根瘤数量增加。此外,在硝酸盐存在的情况下,接种根瘤菌的根中其他两个与结瘤相关的 MtCLE 基因 MtCLE12 和 MtCLE13 的表达水平降低,而硝酸盐处理和接种根瘤菌的对照根中 MtCLE35 基因表达没有显著差异。总之,这些发现表明 MtCLE35 在高硝酸盐条件下对根瘤数量起着关键作用,在高硝酸盐条件下其他与结瘤相关的 MtCLE 基因的表达水平降低。
赛诺菲巴斯德 91,880,415 葛兰素史克(GSK) 73,345,617 霍夫曼-罗氏公司 65,355,758 Seqirus 33,396,110 诺华 15,292,743 Medimmune 11,556,151 Kaketsuken(KM Biologics) 6,614,476 大阪大学微生物疾病研究基金会(BIKEN) 6,459,328 Denka Seiken Co. Ltd. 4,631,388 北里第一三共疫苗有限公司(Daiichi Sankyo Vaccine CO.Ltd.) 3,981,715 GC Pharma(前绿十字公司) 3,378,414 CSL Limted 2,667,745布塔坦研究所 2,730,303 科兴生物制品有限公司 1,453,267 上海生物制品研究所有限公司 1,082,381 华兰生物疫苗股份有限公司 817,303 SK Bioscience 734,305 Fluart Innovative Vaccines LTD 667,785 Adimmune Corporation 625,949 Becton Dickinson and Company (BD) 341,432 病毒、疫苗和血清研究所 Torlak 294,582 北京天坛生物制品股份有限公司 235,234 百特国际公司 209,238 长春生物制品研究所有限公司 CNBG 402,046 圣彼得堡疫苗和血清科学研究所 168,888 DiaSorin Molecular LLC 155,658 Omninvest Vaccine Manufacturing, Researching & Trading Ltd. 149,518 Alere Inc. 117,159 Takeda Pharmaceuticals Internatioanl GmbH 115,025 Focus Diagnostics, Inc. 83,844 CNBG-武汉生物制品研究所有限公司52,678 北京生物研究所生物制品有限公司(BBIBP) 49,798 Qiagen 61,512 印度血清研究所有限公司 48,335 政府制药组织(GPO) 25,059 印度疫苗和医学生物制品研究所(IVAC) 23,303 Quidel Corporation 23,303 中国生物技术集团 20,000 Princeton Biomeditech Corporation 23,303 卡迪拉医疗保健有限公司(研发中心) 82,793 Response Biomedical Corporation 16,762 Cepheid 25,059 Indevr, Inc. 15,389 Fast Track Diagnostics 13,045 Vabiotech 15,230 NPO Petrovax Pharm 10,246 Medicago Inc. 7,439 Nanotherapeutics 5,337 Nanosphere Inc. 4,984 PT Bio Farma (Persero) 4,984 Protein Sciences Corporation 4,984 UMN Pharma Inc. 2,799 兰州生物制品研究所 2,173