活性依赖性转录因子MEF2C中的突变与几种神经精神疾病有关。在其中表现出自闭症谱系障碍(ASD)相关的行为置换。具有MEF2C突变的多种动物模型提供了令人信服的证据,表明MEF2C确实是ASD基因。然而,对MEF2C种系或全球脑敲除的小鼠的研究的能力有限,可以识别表达MEF2C介导的ASD行为所需的精确神经底物和细胞类型。鉴于海马神经发生在认知和社会行为中的作用,在这项研究中,我们旨在研究MEF2C在新近产生的齿状颗粒细胞(DGC)中的作用和功能中的作用。MEF2C(MEF2C OE)的过表达在祖细胞阶段捕捉了神经发生的过渡,如MEF2C OE DGC中SOX2 +的持续表达所表明。MEF2C(MEF2C CKO)的条件敲除允许MEF2C CKO细胞的神经元承诺;但是,MEF2C CKO不仅损害了树突状植物和脊柱形成,而且还损害了MEF2C CKO DGC的突触传播。此外,MEF2C CKO的异常结构和功能
维持健康的上皮性内皮并置需要在肾小球细胞壁ches中进行串扰。我们试图了解内皮细胞和内膜细胞从健康状况到DKD损伤的空间锚定调节和过渡。从74个人类肾样品中,借用了一种综合的多摩学方法,以鉴定肾小球毛细血管内皮(EC-GC)和肾小球细胞中的细胞壁ni,细胞损伤轨迹,细胞损伤轨迹和调节转录因子(TF)网络。数据是从单核RNA和ATAC测序以及三种正交空间转录组技术中取出的,以与组织病理学和临床试验数据相关。我们鉴定出富含增殖性内皮细胞亚型(PREC)的糖尿病性肾小球的细胞生态位(PREC)和改变的血管平滑肌细胞(VSMC)。该利基内的细胞通信维持了促血管生成信号传导,抗血管生成因子的丧失。我们确定了MEF2C,MEF2A和TRPS1的TF网络,该网络调节了SEMA6A和PLXNA2,这是一种受体配对的相对血管生成。在TF网络的计算机敲除中,从健康的EC-GC向退化(损伤)内皮表型加速了过渡,并伴随着EC-GC和PR PREC表达模式的破坏。富含pROC的肾小球具有新生血管的组织学证据。在糖尿病性肾小球中,MEF2C活性增加,结节性肾小球硬化。MEF2C,MEF2A和TRPS1 TF网络仔细平衡DKD中EC-GC的命运。SGLT2I治疗可能会恢复MEF2C活性的平衡。MEF2C的基因调节网络(GRN)在DKD患者的EC-GC中失调,但葡萄糖转运蛋白-2抑制剂(SGLT2I)治疗逆转了DKD的MEF2C GRN效应。当TF网络在DKD中“打开”或表达过表达时,EC-GC可能会发展到先进状态,而TF抑制会导致细胞死亡。
摘要:转录因子 MEF2C 在神经元、心脏、骨骼和软骨的分子过程以及颅面发育中至关重要。MEF2C 与人类疾病 MRD20 有关,该疾病患者的神经元和颅面发育异常。通过表型分析,对斑马鱼 mef2ca;mef2cb 双突变体进行了颅面和行为发育异常分析。采用定量 PCR 检测突变幼虫中神经元标记基因的表达水平。通过 6 dpf 幼虫的游泳活动分析了运动行为。我们发现 mef2ca; mef2cb 双突变体在早期发育过程中表现出几种异常表型,包括已经在携带每个旁系同源物突变的斑马鱼中描述的表型,以及 (i) 严重的颅面表型(包括软骨和真皮骨结构)、(ii) 由于心脏水肿破坏而导致的发育停滞和 (iii) 行为的明显改变。我们证明在斑马鱼 mef2ca ; mef2cb 双突变体中观察到的缺陷与之前在 MEF2C 缺陷小鼠和 MRD20 患者中描述的缺陷相似,证实了这些突变系可作为 MRD20 疾病研究、新治疗靶点识别和可能的挽救策略筛选的模型。
陶艳梦 1、杨阳 1、杨正浩 1、王利鹏 2、王世强 2 和赵阳 1,3,* 1 天然药物及仿生药物国家重点实验室、细胞增殖与分化教育部重点实验室、心脏代谢分子医学北京市重点实验室、北大-清华生命科学中心、北京大学未来技术学院分子医学研究所,北京 100871,中国 2 膜生物学国家重点实验室,北京大学生命科学学院,北京 100871,中国 3 主要联系人 *通讯作者:yangzhao@pku.edu.cn 摘要 直接心脏重编程以诱导心肌细胞样细胞,例如通过 GMT(Gata4、Mef2c 和 Tbx5),是体内再生受损心脏和体外疾病建模的一种有前途的途径。补充其他因子和化学药剂可以提高效率,但引发了对心脏成纤维细胞选择性的担忧,并使原位心脏重编程的递送复杂化。在这里,我们筛选了 2000 种具有已知生物活性的化学物质,发现 2C(SB431542 和 Baricitinib)的组合可通过 GMT 显着增强心脏重编程。没有 Gata4,MT(Mef2c 和 Tbx5)加 2C 可以选择性地重编程心脏成纤维细胞,并提高效率、动力学和心肌细胞功能。此外,2C 显着增强了人心脏成纤维细胞的心脏重编程。2C 通过抑制 Alk5、Tyk2 和下调 Oas2、Oas3、Serpina3n 和 Tgfbi 协同增强心脏重编程。2C 能够实现选择性和稳健的心脏重编程,可以极大地促进体外疾病建模并促进体内临床治疗性心脏再生。关键词:心脏重编程,选择性,稳健性,转录因子,化学物质,小鼠,人类
rett综合征(RTT)是一种X连锁的发育性脑膜病,患病率约为10,000名女性[1]。典型的RTT和非典型RTT都属于RTT一词。在大多数患者中发现MECP2突变。非典型RTT包括单基因疾病,例如FOXG1综合,CDKL5缺乏症,MECP2重复综合体和与MECP2相关的严重新生儿性脑病,以及其他与其他发育性疾病有关3]。RTT患者的总死亡率为每年1.2%,其中20-26%是突然的和出乎意料的,并且怀疑多达35%的人是心肺逮捕。心脏呼吸停滞的遗体尚未完全阐明。主要原因包括癫痫发作(即癫痫中突然未诊断的死亡),自主性功能障碍或心律不齐[4]。Multiple cardiac abnormalities have been associated with RTT including subclinical biventricular myocardial dysfunc- tion, reduced heart rate (HR) variability, cardiac arrhythmias, and abnormal cardiac repolarization on electrocardiogram (ECG) (such as prolonged heartrate corrected QT (QTc) inter- val and nonspecific T-wave abnormalities) [5-11]。由于QTC的延长和心脏重极化的异质性增加与危及生命的心室心律不齐的风险增加有关,因此它们可能与RTT猝死有关[12,13]。然而,QTC测量值在RTT中是可变的,而T波异常仅在一个小病例序列的RTT [9,14]中被定性地描述为非特异性。自动鉴定异常心脏复极化的心电图特征对于RTT患者的风险分层和监视可能很重要。我们试图比较T波的定量形态特征,包括扁平度,不对称性和RTT患者之间的缺口和正常对照组。我们还调查了Re-
