简介:技术发展促进了从孤立的深海生态系统(例如深渊结节场)中收集大量图像的收集。将图像作为监测工具在这些感兴趣的领域进行深海开发非常有价值。但是,为了收集大量的物种观测值,需要分析数千个图像,尤其是如果在深渊结节场中,高度多样性与低丰度相结合时,则需要进行分析。作为大量图像的视觉解释和定量信息的手动提取是耗时且容易出错的,计算检测工具可能会起关键作用,以减轻这种负担。然而,使用深度学习 - 基于深度学习的计算机视觉系统来实现动物群检测和分类的任务,仍然没有建立的工作流量来进行有效的海洋图像分析。
底栖调查发现,该地区主要生物为多毛类等喜细沙生物,还有密集的海胆 Echinoidea/ Spatangoida 和 Gracilechinus acutus,海星 Asterias rubens 、 Hippasteria phrygiana 和 Astropecten irregularis 以及寄居蟹 Paguridae 。沉积物表面可见动物洞穴、管道和足迹,但这些都很小,而且没有观察到穴居巨型动物。观察到的固着动物包括海葵 Actiniaria 、普通海螺 Buccinum undatum 和草皮形成属,如水螅和苔藓虫。有证据表明,在 Mariner 油田附近有北极蛤(OSPAR 受威胁和/或数量下降的物种,以及苏格兰优先海洋特征 (PMF)),此外,还观察到一种海笔 Virgularia mirabilis 和动物洞穴。从调查样本来看,这种密度不足以构成 OSPAR 栖息地“海围栏和穴居巨型动物群落”,尽管它可能存在。调查结果表明存在 Funiculina quadrangularis,这可能
土壤是通过风化,物理/化学和生物学过程改变地球地壳的上层。它由矿物颗粒,有机物,水,空气和活生物体组成,这些生物是在遗传土壤中组织的。不同的土壤代表了各种基础因素在其形成中的影响,并且随着它们的理化特征沿着不同轴(表面和地下地平面)移动时,在微型壁球范围内的位置和给定位点内存在可变性。这种奇怪的特征将土壤转化为非常多样化的生态系统的综合,因此其研究很困难,因为非常多样化的社区可以在相同样本的较小规模中共存。土壤生物涉及宏观/Megafauna,Mesofauna和Microfauna/Flora,尽管占土壤总质量的不到1%,但它们在维持土壤生态系统方面起着关键的功能作用。本研究描述了特征关键土壤微生物的各种方法,例如细菌,古细菌,植物生长促进细菌,卷肌菌根和线虫。关键字:土壤;微生物;宏/ megafauna; Mesofauna;缩影。1。简介“土壤是地球表面的天然物理覆盖物,代表
水的环境DNA(EDNA)抽样是对水生动物物种进行综合和无创监测的强大方法。但是,很少有关于其应用于鲸类物种的报道。2021年6月29日,一条鲸鱼(绰号为小)出现在中国广东省的Dapeng Bay。我们使用EDNA技术来获取与该鲸鱼有关的信息(例如,物种识别和食物来源),并追踪其可能的起源。四个鲸鱼线粒体序列(12S rDNA,16S rDNA,细胞色素C氧化酶亚基1和对照区)的片段是从Dapeng Bay收集的Edna的扩增子获得的;序列条形码表明这是伊甸园的鲸鱼(Balaenoptera Edeni Edeni Anderson 1879)。Analysis of potential prey species (PPS) suggested that this whale might enter Dapeng Bay while tracking prey, mainly sardines ( Sardinella lemuru , Sardinella gibbosa and Sardinella jussieui ) and anchovies ( Thryssa dussumieri , Thryssa vitrirostris and Thryssa kammalensis ).从与Dapeng Bay相邻的水域中收集的样品中检索Edna Metabarcoding数据(即Lingding Bay和Daya Bay)透露,伊甸园的鲸鱼出现在Dapeng Bay(2021年4月上旬)出现前2个月前出现在Lingding Bay外面。总体而言,这项研究表明,EDNA是一种非常有效的非侵入性调查方法,用于准确鉴定目标鲸类和猎物成分。它可用于监视受严格法律保护的Megafauna,或者用于监视未知条件的Megafauna。
北极正在经历迅速的天气变化,对居住在该地区的标志性动物构成了严重威胁 - 北极熊。本文回顾了气候变化对北极熊生态多样性的巨大影响,详细研究了它们的分布,栖息地使用,食物供应和人口数量的变化。当前对它们环境进化和适应性的理解仍然不足。这次会议强调了研究北极熊会使全世界受益,因为它们是一个引人入胜的Megafauna,并且是北极的定义象征。该报告巩固了明显的调查结果,阐明了进一步研究环境保护问题的迫切需求,并提出了未来的计划。总而言之,这个故事将北极熊的保护与维持北极的脆弱平衡联系起来,因为气候变化在全球生态系统中越来越多。进一步研究这些相互联系的关系并采取有针对性的保护措施将有助于努力保护这个充满活力而脆弱的极性区域。关键字:北极;气候变化;北极熊生物多样性。
该栖息地分布广泛,不太可能对更广泛的调查区域具有保护意义。这是北极蛤蜊的首选栖息地,但在两个调查区域均未观察到成年北极蛤蜊,在任何海底照片中都看不到沉积物表面的虹吸管。由于在两个调查区域中都观察到了相对高反射率的区域,因此认为附件一栖息地“石礁”很可能出现。然而,经过评估,这些区域未达到最低范围,因此不被视为构成附件一石礁栖息地。其他受保护特征,例如(但不限于)PMF 北极蛤蜊、OSPAR 受威胁和/或减少的“海塘和穴居巨型动物”物种和深海海绵聚集体,均未从地球物理或摄影数据中识别出来。
9。“协作研究:ORCC:全球侵入性昆虫中的气候变化反应:量化局部适应性,季节性适应和表型可塑性的作用。”国家科学基金会(NSF)。对气候变化的生物反应,由iOS和EPSCOR共同资助。奖励号:2412801。奖励金额:UVM的$ 501,476(协作授予的总金额:$ 1,390,732)。绩效期:2024年12月1日 - 2028年11月30日。pi:jcb nunez; Co-Pi(S):Nick Teets和Katie Lotterhos。8。“ IRES:使用远程技术监测海洋Megafauna和Coral Reef社区”。国家科学基金会(NSF),国际科学与工程办公室(OISE)。奖励号:2246323。奖励金额:298,969美元。2023年7月1日的表演期间,2026年6月30日。pi:L May-Collado; Co-Pi:JCB Nunez;前竞赛:伊斯顿·怀特(Easton White)。
气候变化的影响已经在全球范围内经历过,但也许比北极(Kovacs&Lydersen,2008年)更深刻。大约三分之二的北极被归类为海洋地区,气候变化对这些生态系统的影响在各个方面都在加剧,从海面温度(SST)增加到海冰的融化和海洋分层的变化(Grémillet&Descamps,20233)。尤其是海洋巨型群岛(Megafauna)(例如鲸鱼和pinipeds)感受到了这些非生物作用,它们在食品网中起着关键作用,并且在特定的生态栖息地和条件中非常专业。它们也被称为气候变化的弹性较小,因为它们比小型短暂的动物不太可能适应快速变化(von Hammerstein等,2022)。因此,在研究气候变化对海洋生态系统的影响时,科学家通常将它们称为指标物种(Grémillet&Descamps,2023年)。在本文中,将分析和讨论在气候预测下冰岛海豹的运输模式和现场状况的变化。
调查显示,卡拉尼什的沉积物由分选不良的中质粉砂和一层薄薄的砂质粘土组成,粉砂被归类为“环潮细砂”,碳氢化合物和金属浓度略高于背景水平,这被认为表明存在历史钻探活动。该地区有许多凹陷处有高细砂,但没有一个是附件一中甲烷衍生的自生碳酸盐,而 Scanner Pockmark SAC 距离卡拉尼什 33 公里。物种表明粉砂沉积物主要包括环节动物(多样性和成分占主导地位)、软体动物、甲壳类动物和棘皮动物,包括海蛇尾。存在带有洞穴和土丘的严重生物扰动基质,表明可能存在被 OSPAR 列入受威胁或正在减少的栖息地“海上围栏和穴居巨型动物群落”和被 OSPAR 列入正在减少的海洋蛤蜊,并且该保护区位于卡拉尼什以东 56 公里的挪威边界沉积物计划自然保护海洋保护区内。